Step | Hyp | Ref
| Expression |
1 | | prfval.k |
. 2
⊢ 𝑃 = (𝐹 〈,〉F 𝐺) |
2 | | df-prf 17892 |
. . . 4
⊢
〈,〉F = (𝑓 ∈ V, 𝑔 ∈ V ↦ ⦋dom
(1st ‘𝑓) /
𝑏⦌〈(𝑥 ∈ 𝑏 ↦ 〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉))〉) |
3 | 2 | a1i 11 |
. . 3
⊢ (𝜑 →
〈,〉F = (𝑓 ∈ V, 𝑔 ∈ V ↦ ⦋dom
(1st ‘𝑓) /
𝑏⦌〈(𝑥 ∈ 𝑏 ↦ 〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉))〉)) |
4 | | fvex 6787 |
. . . . . 6
⊢
(1st ‘𝑓) ∈ V |
5 | 4 | dmex 7758 |
. . . . 5
⊢ dom
(1st ‘𝑓)
∈ V |
6 | 5 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → dom (1st ‘𝑓) ∈ V) |
7 | | simprl 768 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → 𝑓 = 𝐹) |
8 | 7 | fveq2d 6778 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (1st ‘𝑓) = (1st ‘𝐹)) |
9 | 8 | dmeqd 5814 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → dom (1st ‘𝑓) = dom (1st
‘𝐹)) |
10 | | prfval.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐶) |
11 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝐷) =
(Base‘𝐷) |
12 | | relfunc 17577 |
. . . . . . . . 9
⊢ Rel
(𝐶 Func 𝐷) |
13 | | prfval.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
14 | | 1st2ndbr 7883 |
. . . . . . . . 9
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
15 | 12, 13, 14 | sylancr 587 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
16 | 10, 11, 15 | funcf1 17581 |
. . . . . . 7
⊢ (𝜑 → (1st
‘𝐹):𝐵⟶(Base‘𝐷)) |
17 | 16 | fdmd 6611 |
. . . . . 6
⊢ (𝜑 → dom (1st
‘𝐹) = 𝐵) |
18 | 17 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → dom (1st ‘𝐹) = 𝐵) |
19 | 9, 18 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → dom (1st ‘𝑓) = 𝐵) |
20 | | simpr 485 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵) |
21 | | simplrl 774 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → 𝑓 = 𝐹) |
22 | 21 | fveq2d 6778 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (1st ‘𝑓) = (1st ‘𝐹)) |
23 | 22 | fveq1d 6776 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ((1st ‘𝑓)‘𝑥) = ((1st ‘𝐹)‘𝑥)) |
24 | | simplrr 775 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → 𝑔 = 𝐺) |
25 | 24 | fveq2d 6778 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (1st ‘𝑔) = (1st ‘𝐺)) |
26 | 25 | fveq1d 6776 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ((1st ‘𝑔)‘𝑥) = ((1st ‘𝐺)‘𝑥)) |
27 | 23, 26 | opeq12d 4812 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → 〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 = 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉) |
28 | 20, 27 | mpteq12dv 5165 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥 ∈ 𝑏 ↦ 〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉) = (𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉)) |
29 | | eqidd 2739 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉) = (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉)) |
30 | 20, 20, 29 | mpoeq123dv 7350 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉))) |
31 | 21 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑓 = 𝐹) |
32 | 31 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (2nd ‘𝑓) = (2nd ‘𝐹)) |
33 | 32 | oveqd 7292 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑥(2nd ‘𝑓)𝑦) = (𝑥(2nd ‘𝐹)𝑦)) |
34 | 33 | dmeqd 5814 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → dom (𝑥(2nd ‘𝑓)𝑦) = dom (𝑥(2nd ‘𝐹)𝑦)) |
35 | | prfval.h |
. . . . . . . . . . . 12
⊢ 𝐻 = (Hom ‘𝐶) |
36 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
37 | 15 | ad4antr 729 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
38 | | simplr 766 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
39 | | simpr 485 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
40 | 10, 35, 36, 37, 38, 39 | funcf2 17583 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑥(2nd ‘𝐹)𝑦):(𝑥𝐻𝑦)⟶(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦))) |
41 | 40 | fdmd 6611 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → dom (𝑥(2nd ‘𝐹)𝑦) = (𝑥𝐻𝑦)) |
42 | 34, 41 | eqtrd 2778 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → dom (𝑥(2nd ‘𝑓)𝑦) = (𝑥𝐻𝑦)) |
43 | 33 | fveq1d 6776 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝑥(2nd ‘𝑓)𝑦)‘ℎ) = ((𝑥(2nd ‘𝐹)𝑦)‘ℎ)) |
44 | 24 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 𝑔 = 𝐺) |
45 | 44 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (2nd ‘𝑔) = (2nd ‘𝐺)) |
46 | 45 | oveqd 7292 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑥(2nd ‘𝑔)𝑦) = (𝑥(2nd ‘𝐺)𝑦)) |
47 | 46 | fveq1d 6776 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝑥(2nd ‘𝑔)𝑦)‘ℎ) = ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)) |
48 | 43, 47 | opeq12d 4812 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉 = 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉) |
49 | 42, 48 | mpteq12dv 5165 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉) = (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉)) |
50 | 49 | 3impa 1109 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉) = (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉)) |
51 | 50 | mpoeq3dva 7352 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))) |
52 | 30, 51 | eqtrd 2778 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))) |
53 | 28, 52 | opeq12d 4812 |
. . . 4
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → 〈(𝑥 ∈ 𝑏 ↦ 〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉))〉 = 〈(𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉) |
54 | 6, 19, 53 | csbied2 3872 |
. . 3
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → ⦋dom (1st
‘𝑓) / 𝑏⦌〈(𝑥 ∈ 𝑏 ↦ 〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉))〉 = 〈(𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉) |
55 | 13 | elexd 3452 |
. . 3
⊢ (𝜑 → 𝐹 ∈ V) |
56 | | prfval.d |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) |
57 | 56 | elexd 3452 |
. . 3
⊢ (𝜑 → 𝐺 ∈ V) |
58 | | opex 5379 |
. . . 4
⊢
〈(𝑥 ∈
𝐵 ↦
〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉 ∈ V |
59 | 58 | a1i 11 |
. . 3
⊢ (𝜑 → 〈(𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉 ∈ V) |
60 | 3, 54, 55, 57, 59 | ovmpod 7425 |
. 2
⊢ (𝜑 → (𝐹 〈,〉F 𝐺) = 〈(𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉) |
61 | 1, 60 | eqtrid 2790 |
1
⊢ (𝜑 → 𝑃 = 〈(𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉) |