Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prfval Structured version   Visualization version   GIF version

Theorem prfval 17225
 Description: Value of the pairing functor. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
prfval.k 𝑃 = (𝐹 ⟨,⟩F 𝐺)
prfval.b 𝐵 = (Base‘𝐶)
prfval.h 𝐻 = (Hom ‘𝐶)
prfval.c (𝜑𝐹 ∈ (𝐶 Func 𝐷))
prfval.d (𝜑𝐺 ∈ (𝐶 Func 𝐸))
Assertion
Ref Expression
prfval (𝜑𝑃 = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
Distinct variable groups:   𝑥,,𝑦,𝐵   𝑥,𝐶,𝑦   ,𝐹,𝑥,𝑦   𝜑,,𝑥,𝑦   𝑥,𝐷,𝑦   ,𝐺,𝑥,𝑦   ,𝐻,𝑥,𝑦
Allowed substitution hints:   𝐶()   𝐷()   𝑃(𝑥,𝑦,)   𝐸(𝑥,𝑦,)

Proof of Theorem prfval
Dummy variables 𝑓 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prfval.k . 2 𝑃 = (𝐹 ⟨,⟩F 𝐺)
2 df-prf 17201 . . . 4 ⟨,⟩F = (𝑓 ∈ V, 𝑔 ∈ V ↦ dom (1st𝑓) / 𝑏⟨(𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩), (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))⟩)
32a1i 11 . . 3 (𝜑 → ⟨,⟩F = (𝑓 ∈ V, 𝑔 ∈ V ↦ dom (1st𝑓) / 𝑏⟨(𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩), (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))⟩))
4 fvex 6459 . . . . . 6 (1st𝑓) ∈ V
54dmex 7378 . . . . 5 dom (1st𝑓) ∈ V
65a1i 11 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → dom (1st𝑓) ∈ V)
7 simprl 761 . . . . . . 7 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → 𝑓 = 𝐹)
87fveq2d 6450 . . . . . 6 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (1st𝑓) = (1st𝐹))
98dmeqd 5571 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → dom (1st𝑓) = dom (1st𝐹))
10 prfval.b . . . . . . . 8 𝐵 = (Base‘𝐶)
11 eqid 2778 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
12 relfunc 16907 . . . . . . . . 9 Rel (𝐶 Func 𝐷)
13 prfval.c . . . . . . . . 9 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
14 1st2ndbr 7496 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1512, 13, 14sylancr 581 . . . . . . . 8 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1610, 11, 15funcf1 16911 . . . . . . 7 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝐷))
1716fdmd 6300 . . . . . 6 (𝜑 → dom (1st𝐹) = 𝐵)
1817adantr 474 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → dom (1st𝐹) = 𝐵)
199, 18eqtrd 2814 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → dom (1st𝑓) = 𝐵)
20 simpr 479 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
21 simplrl 767 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → 𝑓 = 𝐹)
2221fveq2d 6450 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (1st𝑓) = (1st𝐹))
2322fveq1d 6448 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ((1st𝑓)‘𝑥) = ((1st𝐹)‘𝑥))
24 simplrr 768 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → 𝑔 = 𝐺)
2524fveq2d 6450 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (1st𝑔) = (1st𝐺))
2625fveq1d 6448 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ((1st𝑔)‘𝑥) = ((1st𝐺)‘𝑥))
2723, 26opeq12d 4644 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ = ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩)
2820, 27mpteq12dv 4969 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩) = (𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
29 eqidd 2779 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩) = ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))
3020, 20, 29mpt2eq123dv 6994 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩)) = (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩)))
3121ad2antrr 716 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑓 = 𝐹)
3231fveq2d 6450 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (2nd𝑓) = (2nd𝐹))
3332oveqd 6939 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑥(2nd𝑓)𝑦) = (𝑥(2nd𝐹)𝑦))
3433dmeqd 5571 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → dom (𝑥(2nd𝑓)𝑦) = dom (𝑥(2nd𝐹)𝑦))
35 prfval.h . . . . . . . . . . . 12 𝐻 = (Hom ‘𝐶)
36 eqid 2778 . . . . . . . . . . . 12 (Hom ‘𝐷) = (Hom ‘𝐷)
3715ad4antr 722 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
38 simplr 759 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑥𝐵)
39 simpr 479 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
4010, 35, 36, 37, 38, 39funcf2 16913 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑥(2nd𝐹)𝑦):(𝑥𝐻𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
4140fdmd 6300 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → dom (𝑥(2nd𝐹)𝑦) = (𝑥𝐻𝑦))
4234, 41eqtrd 2814 . . . . . . . . 9 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → dom (𝑥(2nd𝑓)𝑦) = (𝑥𝐻𝑦))
4333fveq1d 6448 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑥(2nd𝑓)𝑦)‘) = ((𝑥(2nd𝐹)𝑦)‘))
4424ad2antrr 716 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑔 = 𝐺)
4544fveq2d 6450 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (2nd𝑔) = (2nd𝐺))
4645oveqd 6939 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑥(2nd𝑔)𝑦) = (𝑥(2nd𝐺)𝑦))
4746fveq1d 6448 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑥(2nd𝑔)𝑦)‘) = ((𝑥(2nd𝐺)𝑦)‘))
4843, 47opeq12d 4644 . . . . . . . . 9 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩ = ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)
4942, 48mpteq12dv 4969 . . . . . . . 8 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩) = ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))
50493impa 1097 . . . . . . 7 ((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵𝑦𝐵) → ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩) = ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))
5150mpt2eq3dva 6996 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩)) = (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)))
5230, 51eqtrd 2814 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩)) = (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)))
5328, 52opeq12d 4644 . . . 4 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ⟨(𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩), (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))⟩ = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
546, 19, 53csbied2 3779 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → dom (1st𝑓) / 𝑏⟨(𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩), (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))⟩ = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
5513elexd 3416 . . 3 (𝜑𝐹 ∈ V)
56 prfval.d . . . 4 (𝜑𝐺 ∈ (𝐶 Func 𝐸))
5756elexd 3416 . . 3 (𝜑𝐺 ∈ V)
58 opex 5164 . . . 4 ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩ ∈ V
5958a1i 11 . . 3 (𝜑 → ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩ ∈ V)
603, 54, 55, 57, 59ovmpt2d 7065 . 2 (𝜑 → (𝐹 ⟨,⟩F 𝐺) = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
611, 60syl5eq 2826 1 (𝜑𝑃 = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   = wceq 1601   ∈ wcel 2107  Vcvv 3398  ⦋csb 3751  ⟨cop 4404   class class class wbr 4886   ↦ cmpt 4965  dom cdm 5355  Rel wrel 5360  ‘cfv 6135  (class class class)co 6922   ↦ cmpt2 6924  1st c1st 7443  2nd c2nd 7444  Basecbs 16255  Hom chom 16349   Func cfunc 16899   ⟨,⟩F cprf 17197 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-map 8142  df-ixp 8195  df-func 16903  df-prf 17201 This theorem is referenced by:  prf1  17226  prf2fval  17227  prfcl  17229  prf1st  17230  prf2nd  17231  1st2ndprf  17232
 Copyright terms: Public domain W3C validator