MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prfval Structured version   Visualization version   GIF version

Theorem prfval 18167
Description: Value of the pairing functor. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
prfval.k 𝑃 = (𝐹 ⟨,⟩F 𝐺)
prfval.b 𝐵 = (Base‘𝐶)
prfval.h 𝐻 = (Hom ‘𝐶)
prfval.c (𝜑𝐹 ∈ (𝐶 Func 𝐷))
prfval.d (𝜑𝐺 ∈ (𝐶 Func 𝐸))
Assertion
Ref Expression
prfval (𝜑𝑃 = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
Distinct variable groups:   𝑥,,𝑦,𝐵   𝑥,𝐶,𝑦   ,𝐹,𝑥,𝑦   𝜑,,𝑥,𝑦   𝑥,𝐷,𝑦   ,𝐺,𝑥,𝑦   ,𝐻,𝑥,𝑦
Allowed substitution hints:   𝐶()   𝐷()   𝑃(𝑥,𝑦,)   𝐸(𝑥,𝑦,)

Proof of Theorem prfval
Dummy variables 𝑓 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prfval.k . 2 𝑃 = (𝐹 ⟨,⟩F 𝐺)
2 df-prf 18143 . . . 4 ⟨,⟩F = (𝑓 ∈ V, 𝑔 ∈ V ↦ dom (1st𝑓) / 𝑏⟨(𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩), (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))⟩)
32a1i 11 . . 3 (𝜑 → ⟨,⟩F = (𝑓 ∈ V, 𝑔 ∈ V ↦ dom (1st𝑓) / 𝑏⟨(𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩), (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))⟩))
4 fvex 6874 . . . . . 6 (1st𝑓) ∈ V
54dmex 7888 . . . . 5 dom (1st𝑓) ∈ V
65a1i 11 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → dom (1st𝑓) ∈ V)
7 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → 𝑓 = 𝐹)
87fveq2d 6865 . . . . . 6 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (1st𝑓) = (1st𝐹))
98dmeqd 5872 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → dom (1st𝑓) = dom (1st𝐹))
10 prfval.b . . . . . . . 8 𝐵 = (Base‘𝐶)
11 eqid 2730 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
12 relfunc 17831 . . . . . . . . 9 Rel (𝐶 Func 𝐷)
13 prfval.c . . . . . . . . 9 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
14 1st2ndbr 8024 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1512, 13, 14sylancr 587 . . . . . . . 8 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1610, 11, 15funcf1 17835 . . . . . . 7 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝐷))
1716fdmd 6701 . . . . . 6 (𝜑 → dom (1st𝐹) = 𝐵)
1817adantr 480 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → dom (1st𝐹) = 𝐵)
199, 18eqtrd 2765 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → dom (1st𝑓) = 𝐵)
20 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
21 simplrl 776 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → 𝑓 = 𝐹)
2221fveq2d 6865 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (1st𝑓) = (1st𝐹))
2322fveq1d 6863 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ((1st𝑓)‘𝑥) = ((1st𝐹)‘𝑥))
24 simplrr 777 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → 𝑔 = 𝐺)
2524fveq2d 6865 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (1st𝑔) = (1st𝐺))
2625fveq1d 6863 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ((1st𝑔)‘𝑥) = ((1st𝐺)‘𝑥))
2723, 26opeq12d 4848 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ = ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩)
2820, 27mpteq12dv 5197 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩) = (𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
29 eqidd 2731 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩) = ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))
3020, 20, 29mpoeq123dv 7467 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩)) = (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩)))
3121ad2antrr 726 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑓 = 𝐹)
3231fveq2d 6865 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (2nd𝑓) = (2nd𝐹))
3332oveqd 7407 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑥(2nd𝑓)𝑦) = (𝑥(2nd𝐹)𝑦))
3433dmeqd 5872 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → dom (𝑥(2nd𝑓)𝑦) = dom (𝑥(2nd𝐹)𝑦))
35 prfval.h . . . . . . . . . . . 12 𝐻 = (Hom ‘𝐶)
36 eqid 2730 . . . . . . . . . . . 12 (Hom ‘𝐷) = (Hom ‘𝐷)
3715ad4antr 732 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
38 simplr 768 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑥𝐵)
39 simpr 484 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
4010, 35, 36, 37, 38, 39funcf2 17837 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑥(2nd𝐹)𝑦):(𝑥𝐻𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
4140fdmd 6701 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → dom (𝑥(2nd𝐹)𝑦) = (𝑥𝐻𝑦))
4234, 41eqtrd 2765 . . . . . . . . 9 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → dom (𝑥(2nd𝑓)𝑦) = (𝑥𝐻𝑦))
4333fveq1d 6863 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑥(2nd𝑓)𝑦)‘) = ((𝑥(2nd𝐹)𝑦)‘))
4424ad2antrr 726 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑔 = 𝐺)
4544fveq2d 6865 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (2nd𝑔) = (2nd𝐺))
4645oveqd 7407 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑥(2nd𝑔)𝑦) = (𝑥(2nd𝐺)𝑦))
4746fveq1d 6863 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑥(2nd𝑔)𝑦)‘) = ((𝑥(2nd𝐺)𝑦)‘))
4843, 47opeq12d 4848 . . . . . . . . 9 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩ = ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)
4942, 48mpteq12dv 5197 . . . . . . . 8 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩) = ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))
50493impa 1109 . . . . . . 7 ((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵𝑦𝐵) → ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩) = ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))
5150mpoeq3dva 7469 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩)) = (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)))
5230, 51eqtrd 2765 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩)) = (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)))
5328, 52opeq12d 4848 . . . 4 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ⟨(𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩), (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))⟩ = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
546, 19, 53csbied2 3902 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → dom (1st𝑓) / 𝑏⟨(𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩), (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))⟩ = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
5513elexd 3474 . . 3 (𝜑𝐹 ∈ V)
56 prfval.d . . . 4 (𝜑𝐺 ∈ (𝐶 Func 𝐸))
5756elexd 3474 . . 3 (𝜑𝐺 ∈ V)
58 opex 5427 . . . 4 ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩ ∈ V
5958a1i 11 . . 3 (𝜑 → ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩ ∈ V)
603, 54, 55, 57, 59ovmpod 7544 . 2 (𝜑 → (𝐹 ⟨,⟩F 𝐺) = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
611, 60eqtrid 2777 1 (𝜑𝑃 = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  csb 3865  cop 4598   class class class wbr 5110  cmpt 5191  dom cdm 5641  Rel wrel 5646  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  Basecbs 17186  Hom chom 17238   Func cfunc 17823   ⟨,⟩F cprf 18139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-ixp 8874  df-func 17827  df-prf 18143
This theorem is referenced by:  prf1  18168  prf2fval  18169  prfcl  18171  prf1st  18172  prf2nd  18173  1st2ndprf  18174
  Copyright terms: Public domain W3C validator