MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prfval Structured version   Visualization version   GIF version

Theorem prfval 17225
Description: Value of the pairing functor. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
prfval.k 𝑃 = (𝐹 ⟨,⟩F 𝐺)
prfval.b 𝐵 = (Base‘𝐶)
prfval.h 𝐻 = (Hom ‘𝐶)
prfval.c (𝜑𝐹 ∈ (𝐶 Func 𝐷))
prfval.d (𝜑𝐺 ∈ (𝐶 Func 𝐸))
Assertion
Ref Expression
prfval (𝜑𝑃 = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
Distinct variable groups:   𝑥,,𝑦,𝐵   𝑥,𝐶,𝑦   ,𝐹,𝑥,𝑦   𝜑,,𝑥,𝑦   𝑥,𝐷,𝑦   ,𝐺,𝑥,𝑦   ,𝐻,𝑥,𝑦
Allowed substitution hints:   𝐶()   𝐷()   𝑃(𝑥,𝑦,)   𝐸(𝑥,𝑦,)

Proof of Theorem prfval
Dummy variables 𝑓 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prfval.k . 2 𝑃 = (𝐹 ⟨,⟩F 𝐺)
2 df-prf 17201 . . . 4 ⟨,⟩F = (𝑓 ∈ V, 𝑔 ∈ V ↦ dom (1st𝑓) / 𝑏⟨(𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩), (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))⟩)
32a1i 11 . . 3 (𝜑 → ⟨,⟩F = (𝑓 ∈ V, 𝑔 ∈ V ↦ dom (1st𝑓) / 𝑏⟨(𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩), (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))⟩))
4 fvex 6459 . . . . . 6 (1st𝑓) ∈ V
54dmex 7378 . . . . 5 dom (1st𝑓) ∈ V
65a1i 11 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → dom (1st𝑓) ∈ V)
7 simprl 761 . . . . . . 7 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → 𝑓 = 𝐹)
87fveq2d 6450 . . . . . 6 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (1st𝑓) = (1st𝐹))
98dmeqd 5571 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → dom (1st𝑓) = dom (1st𝐹))
10 prfval.b . . . . . . . 8 𝐵 = (Base‘𝐶)
11 eqid 2778 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
12 relfunc 16907 . . . . . . . . 9 Rel (𝐶 Func 𝐷)
13 prfval.c . . . . . . . . 9 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
14 1st2ndbr 7496 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1512, 13, 14sylancr 581 . . . . . . . 8 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1610, 11, 15funcf1 16911 . . . . . . 7 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝐷))
1716fdmd 6300 . . . . . 6 (𝜑 → dom (1st𝐹) = 𝐵)
1817adantr 474 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → dom (1st𝐹) = 𝐵)
199, 18eqtrd 2814 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → dom (1st𝑓) = 𝐵)
20 simpr 479 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
21 simplrl 767 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → 𝑓 = 𝐹)
2221fveq2d 6450 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (1st𝑓) = (1st𝐹))
2322fveq1d 6448 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ((1st𝑓)‘𝑥) = ((1st𝐹)‘𝑥))
24 simplrr 768 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → 𝑔 = 𝐺)
2524fveq2d 6450 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (1st𝑔) = (1st𝐺))
2625fveq1d 6448 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ((1st𝑔)‘𝑥) = ((1st𝐺)‘𝑥))
2723, 26opeq12d 4644 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ = ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩)
2820, 27mpteq12dv 4969 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩) = (𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
29 eqidd 2779 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩) = ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))
3020, 20, 29mpt2eq123dv 6994 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩)) = (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩)))
3121ad2antrr 716 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑓 = 𝐹)
3231fveq2d 6450 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (2nd𝑓) = (2nd𝐹))
3332oveqd 6939 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑥(2nd𝑓)𝑦) = (𝑥(2nd𝐹)𝑦))
3433dmeqd 5571 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → dom (𝑥(2nd𝑓)𝑦) = dom (𝑥(2nd𝐹)𝑦))
35 prfval.h . . . . . . . . . . . 12 𝐻 = (Hom ‘𝐶)
36 eqid 2778 . . . . . . . . . . . 12 (Hom ‘𝐷) = (Hom ‘𝐷)
3715ad4antr 722 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
38 simplr 759 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑥𝐵)
39 simpr 479 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
4010, 35, 36, 37, 38, 39funcf2 16913 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑥(2nd𝐹)𝑦):(𝑥𝐻𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
4140fdmd 6300 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → dom (𝑥(2nd𝐹)𝑦) = (𝑥𝐻𝑦))
4234, 41eqtrd 2814 . . . . . . . . 9 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → dom (𝑥(2nd𝑓)𝑦) = (𝑥𝐻𝑦))
4333fveq1d 6448 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑥(2nd𝑓)𝑦)‘) = ((𝑥(2nd𝐹)𝑦)‘))
4424ad2antrr 716 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑔 = 𝐺)
4544fveq2d 6450 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (2nd𝑔) = (2nd𝐺))
4645oveqd 6939 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑥(2nd𝑔)𝑦) = (𝑥(2nd𝐺)𝑦))
4746fveq1d 6448 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑥(2nd𝑔)𝑦)‘) = ((𝑥(2nd𝐺)𝑦)‘))
4843, 47opeq12d 4644 . . . . . . . . 9 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩ = ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)
4942, 48mpteq12dv 4969 . . . . . . . 8 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩) = ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))
50493impa 1097 . . . . . . 7 ((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵𝑦𝐵) → ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩) = ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))
5150mpt2eq3dva 6996 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩)) = (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)))
5230, 51eqtrd 2814 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩)) = (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)))
5328, 52opeq12d 4644 . . . 4 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ⟨(𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩), (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))⟩ = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
546, 19, 53csbied2 3779 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → dom (1st𝑓) / 𝑏⟨(𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩), (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))⟩ = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
5513elexd 3416 . . 3 (𝜑𝐹 ∈ V)
56 prfval.d . . . 4 (𝜑𝐺 ∈ (𝐶 Func 𝐸))
5756elexd 3416 . . 3 (𝜑𝐺 ∈ V)
58 opex 5164 . . . 4 ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩ ∈ V
5958a1i 11 . . 3 (𝜑 → ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩ ∈ V)
603, 54, 55, 57, 59ovmpt2d 7065 . 2 (𝜑 → (𝐹 ⟨,⟩F 𝐺) = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
611, 60syl5eq 2826 1 (𝜑𝑃 = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  Vcvv 3398  csb 3751  cop 4404   class class class wbr 4886  cmpt 4965  dom cdm 5355  Rel wrel 5360  cfv 6135  (class class class)co 6922  cmpt2 6924  1st c1st 7443  2nd c2nd 7444  Basecbs 16255  Hom chom 16349   Func cfunc 16899   ⟨,⟩F cprf 17197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-map 8142  df-ixp 8195  df-func 16903  df-prf 17201
This theorem is referenced by:  prf1  17226  prf2fval  17227  prfcl  17229  prf1st  17230  prf2nd  17231  1st2ndprf  17232
  Copyright terms: Public domain W3C validator