MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prfval Structured version   Visualization version   GIF version

Theorem prfval 18160
Description: Value of the pairing functor. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
prfval.k 𝑃 = (𝐹 ⟨,⟩F 𝐺)
prfval.b 𝐵 = (Base‘𝐶)
prfval.h 𝐻 = (Hom ‘𝐶)
prfval.c (𝜑𝐹 ∈ (𝐶 Func 𝐷))
prfval.d (𝜑𝐺 ∈ (𝐶 Func 𝐸))
Assertion
Ref Expression
prfval (𝜑𝑃 = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
Distinct variable groups:   𝑥,,𝑦,𝐵   𝑥,𝐶,𝑦   ,𝐹,𝑥,𝑦   𝜑,,𝑥,𝑦   𝑥,𝐷,𝑦   ,𝐺,𝑥,𝑦   ,𝐻,𝑥,𝑦
Allowed substitution hints:   𝐶()   𝐷()   𝑃(𝑥,𝑦,)   𝐸(𝑥,𝑦,)

Proof of Theorem prfval
Dummy variables 𝑓 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prfval.k . 2 𝑃 = (𝐹 ⟨,⟩F 𝐺)
2 df-prf 18136 . . . 4 ⟨,⟩F = (𝑓 ∈ V, 𝑔 ∈ V ↦ dom (1st𝑓) / 𝑏⟨(𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩), (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))⟩)
32a1i 11 . . 3 (𝜑 → ⟨,⟩F = (𝑓 ∈ V, 𝑔 ∈ V ↦ dom (1st𝑓) / 𝑏⟨(𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩), (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))⟩))
4 fvex 6871 . . . . . 6 (1st𝑓) ∈ V
54dmex 7885 . . . . 5 dom (1st𝑓) ∈ V
65a1i 11 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → dom (1st𝑓) ∈ V)
7 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → 𝑓 = 𝐹)
87fveq2d 6862 . . . . . 6 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (1st𝑓) = (1st𝐹))
98dmeqd 5869 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → dom (1st𝑓) = dom (1st𝐹))
10 prfval.b . . . . . . . 8 𝐵 = (Base‘𝐶)
11 eqid 2729 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
12 relfunc 17824 . . . . . . . . 9 Rel (𝐶 Func 𝐷)
13 prfval.c . . . . . . . . 9 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
14 1st2ndbr 8021 . . . . . . . . 9 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1512, 13, 14sylancr 587 . . . . . . . 8 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1610, 11, 15funcf1 17828 . . . . . . 7 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝐷))
1716fdmd 6698 . . . . . 6 (𝜑 → dom (1st𝐹) = 𝐵)
1817adantr 480 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → dom (1st𝐹) = 𝐵)
199, 18eqtrd 2764 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → dom (1st𝑓) = 𝐵)
20 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
21 simplrl 776 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → 𝑓 = 𝐹)
2221fveq2d 6862 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (1st𝑓) = (1st𝐹))
2322fveq1d 6860 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ((1st𝑓)‘𝑥) = ((1st𝐹)‘𝑥))
24 simplrr 777 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → 𝑔 = 𝐺)
2524fveq2d 6862 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (1st𝑔) = (1st𝐺))
2625fveq1d 6860 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ((1st𝑔)‘𝑥) = ((1st𝐺)‘𝑥))
2723, 26opeq12d 4845 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩ = ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩)
2820, 27mpteq12dv 5194 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩) = (𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩))
29 eqidd 2730 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩) = ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))
3020, 20, 29mpoeq123dv 7464 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩)) = (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩)))
3121ad2antrr 726 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑓 = 𝐹)
3231fveq2d 6862 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (2nd𝑓) = (2nd𝐹))
3332oveqd 7404 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑥(2nd𝑓)𝑦) = (𝑥(2nd𝐹)𝑦))
3433dmeqd 5869 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → dom (𝑥(2nd𝑓)𝑦) = dom (𝑥(2nd𝐹)𝑦))
35 prfval.h . . . . . . . . . . . 12 𝐻 = (Hom ‘𝐶)
36 eqid 2729 . . . . . . . . . . . 12 (Hom ‘𝐷) = (Hom ‘𝐷)
3715ad4antr 732 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
38 simplr 768 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑥𝐵)
39 simpr 484 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
4010, 35, 36, 37, 38, 39funcf2 17830 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑥(2nd𝐹)𝑦):(𝑥𝐻𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
4140fdmd 6698 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → dom (𝑥(2nd𝐹)𝑦) = (𝑥𝐻𝑦))
4234, 41eqtrd 2764 . . . . . . . . 9 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → dom (𝑥(2nd𝑓)𝑦) = (𝑥𝐻𝑦))
4333fveq1d 6860 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑥(2nd𝑓)𝑦)‘) = ((𝑥(2nd𝐹)𝑦)‘))
4424ad2antrr 726 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → 𝑔 = 𝐺)
4544fveq2d 6862 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (2nd𝑔) = (2nd𝐺))
4645oveqd 7404 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → (𝑥(2nd𝑔)𝑦) = (𝑥(2nd𝐺)𝑦))
4746fveq1d 6860 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ((𝑥(2nd𝑔)𝑦)‘) = ((𝑥(2nd𝐺)𝑦)‘))
4843, 47opeq12d 4845 . . . . . . . . 9 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩ = ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)
4942, 48mpteq12dv 5194 . . . . . . . 8 (((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵) ∧ 𝑦𝐵) → ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩) = ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))
50493impa 1109 . . . . . . 7 ((((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) ∧ 𝑥𝐵𝑦𝐵) → ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩) = ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))
5150mpoeq3dva 7466 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩)) = (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)))
5230, 51eqtrd 2764 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩)) = (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩)))
5328, 52opeq12d 4845 . . . 4 (((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) ∧ 𝑏 = 𝐵) → ⟨(𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩), (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))⟩ = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
546, 19, 53csbied2 3899 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → dom (1st𝑓) / 𝑏⟨(𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩), (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))⟩ = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
5513elexd 3471 . . 3 (𝜑𝐹 ∈ V)
56 prfval.d . . . 4 (𝜑𝐺 ∈ (𝐶 Func 𝐸))
5756elexd 3471 . . 3 (𝜑𝐺 ∈ V)
58 opex 5424 . . . 4 ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩ ∈ V
5958a1i 11 . . 3 (𝜑 → ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩ ∈ V)
603, 54, 55, 57, 59ovmpod 7541 . 2 (𝜑 → (𝐹 ⟨,⟩F 𝐺) = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
611, 60eqtrid 2776 1 (𝜑𝑃 = ⟨(𝑥𝐵 ↦ ⟨((1st𝐹)‘𝑥), ((1st𝐺)‘𝑥)⟩), (𝑥𝐵, 𝑦𝐵 ↦ ( ∈ (𝑥𝐻𝑦) ↦ ⟨((𝑥(2nd𝐹)𝑦)‘), ((𝑥(2nd𝐺)𝑦)‘)⟩))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  csb 3862  cop 4595   class class class wbr 5107  cmpt 5188  dom cdm 5638  Rel wrel 5643  cfv 6511  (class class class)co 7387  cmpo 7389  1st c1st 7966  2nd c2nd 7967  Basecbs 17179  Hom chom 17231   Func cfunc 17816   ⟨,⟩F cprf 18132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-ixp 8871  df-func 17820  df-prf 18136
This theorem is referenced by:  prf1  18161  prf2fval  18162  prfcl  18164  prf1st  18165  prf2nd  18166  1st2ndprf  18167
  Copyright terms: Public domain W3C validator