Detailed syntax breakdown of Definition df-prjcrv
Step | Hyp | Ref
| Expression |
1 | | cprjcrv 40661 |
. 2
class
ℙ𝕣𝕠𝕛Crv |
2 | | vn |
. . 3
setvar 𝑛 |
3 | | vk |
. . 3
setvar 𝑘 |
4 | | cn0 12283 |
. . 3
class
ℕ0 |
5 | | cfield 20041 |
. . 3
class
Field |
6 | | vf |
. . . 4
setvar 𝑓 |
7 | | cc0 10921 |
. . . . . . . 8
class
0 |
8 | 2 | cv 1538 |
. . . . . . . 8
class 𝑛 |
9 | | cfz 13289 |
. . . . . . . 8
class
... |
10 | 7, 8, 9 | co 7307 |
. . . . . . 7
class
(0...𝑛) |
11 | 3 | cv 1538 |
. . . . . . 7
class 𝑘 |
12 | | cmhp 21368 |
. . . . . . 7
class
mHomP |
13 | 10, 11, 12 | co 7307 |
. . . . . 6
class
((0...𝑛) mHomP 𝑘) |
14 | 13 | crn 5601 |
. . . . 5
class ran
((0...𝑛) mHomP 𝑘) |
15 | 14 | cuni 4844 |
. . . 4
class ∪ ran ((0...𝑛) mHomP 𝑘) |
16 | 6 | cv 1538 |
. . . . . . . 8
class 𝑓 |
17 | | cevl 21330 |
. . . . . . . . 9
class
eval |
18 | 10, 11, 17 | co 7307 |
. . . . . . . 8
class
((0...𝑛) eval 𝑘) |
19 | 16, 18 | cfv 6458 |
. . . . . . 7
class
(((0...𝑛) eval 𝑘)‘𝑓) |
20 | | vp |
. . . . . . . 8
setvar 𝑝 |
21 | 20 | cv 1538 |
. . . . . . 7
class 𝑝 |
22 | 19, 21 | cima 5603 |
. . . . . 6
class
((((0...𝑛) eval
𝑘)‘𝑓) “ 𝑝) |
23 | | c0g 17199 |
. . . . . . . 8
class
0g |
24 | 11, 23 | cfv 6458 |
. . . . . . 7
class
(0g‘𝑘) |
25 | 24 | csn 4565 |
. . . . . 6
class
{(0g‘𝑘)} |
26 | 22, 25 | wceq 1539 |
. . . . 5
wff
((((0...𝑛) eval
𝑘)‘𝑓) “ 𝑝) = {(0g‘𝑘)} |
27 | | cprjspn 40648 |
. . . . . 6
class
ℙ𝕣𝕠𝕛n |
28 | 8, 11, 27 | co 7307 |
. . . . 5
class (𝑛ℙ𝕣𝕠𝕛n𝑘) |
29 | 26, 20, 28 | crab 3303 |
. . . 4
class {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g‘𝑘)}} |
30 | 6, 15, 29 | cmpt 5164 |
. . 3
class (𝑓 ∈ ∪ ran ((0...𝑛) mHomP 𝑘) ↦ {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g‘𝑘)}}) |
31 | 2, 3, 4, 5, 30 | cmpo 7309 |
. 2
class (𝑛 ∈ ℕ0,
𝑘 ∈ Field ↦
(𝑓 ∈ ∪ ran ((0...𝑛) mHomP 𝑘) ↦ {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g‘𝑘)}})) |
32 | 1, 31 | wceq 1539 |
1
wff
ℙ𝕣𝕠𝕛Crv = (𝑛 ∈ ℕ0, 𝑘 ∈ Field ↦ (𝑓 ∈ ∪ ran ((0...𝑛) mHomP 𝑘) ↦ {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g‘𝑘)}})) |