Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjcrvfval Structured version   Visualization version   GIF version

Theorem prjcrvfval 42646
Description: Value of the projective curve function. (Contributed by SN, 23-Nov-2024.)
Hypotheses
Ref Expression
prjcrvfval.h 𝐻 = ((0...𝑁) mHomP 𝐾)
prjcrvfval.e 𝐸 = ((0...𝑁) eval 𝐾)
prjcrvfval.p 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)
prjcrvfval.0 0 = (0g𝐾)
prjcrvfval.n (𝜑𝑁 ∈ ℕ0)
prjcrvfval.k (𝜑𝐾 ∈ Field)
Assertion
Ref Expression
prjcrvfval (𝜑 → (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ran 𝐻 ↦ {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }}))
Distinct variable groups:   𝑓,𝑁,𝑝   𝑓,𝐾,𝑝   𝑃,𝑝   𝑓,𝐻
Allowed substitution hints:   𝜑(𝑓,𝑝)   𝑃(𝑓)   𝐸(𝑓,𝑝)   𝐻(𝑝)   0 (𝑓,𝑝)

Proof of Theorem prjcrvfval
Dummy variables 𝑛 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prjcrvfval.n . 2 (𝜑𝑁 ∈ ℕ0)
2 prjcrvfval.k . 2 (𝜑𝐾 ∈ Field)
3 oveq2 7440 . . . . . . . 8 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
4 oveq12 7441 . . . . . . . 8 (((0...𝑛) = (0...𝑁) ∧ 𝑘 = 𝐾) → ((0...𝑛) mHomP 𝑘) = ((0...𝑁) mHomP 𝐾))
53, 4sylan 580 . . . . . . 7 ((𝑛 = 𝑁𝑘 = 𝐾) → ((0...𝑛) mHomP 𝑘) = ((0...𝑁) mHomP 𝐾))
6 prjcrvfval.h . . . . . . 7 𝐻 = ((0...𝑁) mHomP 𝐾)
75, 6eqtr4di 2794 . . . . . 6 ((𝑛 = 𝑁𝑘 = 𝐾) → ((0...𝑛) mHomP 𝑘) = 𝐻)
87rneqd 5948 . . . . 5 ((𝑛 = 𝑁𝑘 = 𝐾) → ran ((0...𝑛) mHomP 𝑘) = ran 𝐻)
98unieqd 4919 . . . 4 ((𝑛 = 𝑁𝑘 = 𝐾) → ran ((0...𝑛) mHomP 𝑘) = ran 𝐻)
10 oveq12 7441 . . . . . 6 ((𝑛 = 𝑁𝑘 = 𝐾) → (𝑛ℙ𝕣𝕠𝕛n𝑘) = (𝑁ℙ𝕣𝕠𝕛n𝐾))
11 prjcrvfval.p . . . . . 6 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)
1210, 11eqtr4di 2794 . . . . 5 ((𝑛 = 𝑁𝑘 = 𝐾) → (𝑛ℙ𝕣𝕠𝕛n𝑘) = 𝑃)
13 id 22 . . . . . . . . . 10 (𝑘 = 𝐾𝑘 = 𝐾)
143, 13oveqan12d 7451 . . . . . . . . 9 ((𝑛 = 𝑁𝑘 = 𝐾) → ((0...𝑛) eval 𝑘) = ((0...𝑁) eval 𝐾))
15 prjcrvfval.e . . . . . . . . 9 𝐸 = ((0...𝑁) eval 𝐾)
1614, 15eqtr4di 2794 . . . . . . . 8 ((𝑛 = 𝑁𝑘 = 𝐾) → ((0...𝑛) eval 𝑘) = 𝐸)
1716fveq1d 6907 . . . . . . 7 ((𝑛 = 𝑁𝑘 = 𝐾) → (((0...𝑛) eval 𝑘)‘𝑓) = (𝐸𝑓))
1817imaeq1d 6076 . . . . . 6 ((𝑛 = 𝑁𝑘 = 𝐾) → ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = ((𝐸𝑓) “ 𝑝))
19 fveq2 6905 . . . . . . . . 9 (𝑘 = 𝐾 → (0g𝑘) = (0g𝐾))
20 prjcrvfval.0 . . . . . . . . 9 0 = (0g𝐾)
2119, 20eqtr4di 2794 . . . . . . . 8 (𝑘 = 𝐾 → (0g𝑘) = 0 )
2221adantl 481 . . . . . . 7 ((𝑛 = 𝑁𝑘 = 𝐾) → (0g𝑘) = 0 )
2322sneqd 4637 . . . . . 6 ((𝑛 = 𝑁𝑘 = 𝐾) → {(0g𝑘)} = { 0 })
2418, 23eqeq12d 2752 . . . . 5 ((𝑛 = 𝑁𝑘 = 𝐾) → (((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g𝑘)} ↔ ((𝐸𝑓) “ 𝑝) = { 0 }))
2512, 24rabeqbidv 3454 . . . 4 ((𝑛 = 𝑁𝑘 = 𝐾) → {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g𝑘)}} = {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }})
269, 25mpteq12dv 5232 . . 3 ((𝑛 = 𝑁𝑘 = 𝐾) → (𝑓 ran ((0...𝑛) mHomP 𝑘) ↦ {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g𝑘)}}) = (𝑓 ran 𝐻 ↦ {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }}))
27 df-prjcrv 42645 . . 3 ℙ𝕣𝕠𝕛Crv = (𝑛 ∈ ℕ0, 𝑘 ∈ Field ↦ (𝑓 ran ((0...𝑛) mHomP 𝑘) ↦ {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g𝑘)}}))
286ovexi 7466 . . . . . 6 𝐻 ∈ V
2928rnex 7933 . . . . 5 ran 𝐻 ∈ V
3029uniex 7762 . . . 4 ran 𝐻 ∈ V
3130mptex 7244 . . 3 (𝑓 ran 𝐻 ↦ {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }}) ∈ V
3226, 27, 31ovmpoa 7589 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ Field) → (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ran 𝐻 ↦ {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }}))
331, 2, 32syl2anc 584 1 (𝜑 → (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ran 𝐻 ↦ {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {crab 3435  {csn 4625   cuni 4906  cmpt 5224  ran crn 5685  cima 5687  cfv 6560  (class class class)co 7432  0cc0 11156  0cn0 12528  ...cfz 13548  0gc0g 17485  Fieldcfield 20731   eval cevl 22098   mHomP cmhp 22134  ℙ𝕣𝕠𝕛ncprjspn 42629  ℙ𝕣𝕠𝕛Crvcprjcrv 42644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-prjcrv 42645
This theorem is referenced by:  prjcrvval  42647
  Copyright terms: Public domain W3C validator