Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjcrvfval Structured version   Visualization version   GIF version

Theorem prjcrvfval 42604
Description: Value of the projective curve function. (Contributed by SN, 23-Nov-2024.)
Hypotheses
Ref Expression
prjcrvfval.h 𝐻 = ((0...𝑁) mHomP 𝐾)
prjcrvfval.e 𝐸 = ((0...𝑁) eval 𝐾)
prjcrvfval.p 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)
prjcrvfval.0 0 = (0g𝐾)
prjcrvfval.n (𝜑𝑁 ∈ ℕ0)
prjcrvfval.k (𝜑𝐾 ∈ Field)
Assertion
Ref Expression
prjcrvfval (𝜑 → (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ran 𝐻 ↦ {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }}))
Distinct variable groups:   𝑓,𝑁,𝑝   𝑓,𝐾,𝑝   𝑃,𝑝   𝑓,𝐻
Allowed substitution hints:   𝜑(𝑓,𝑝)   𝑃(𝑓)   𝐸(𝑓,𝑝)   𝐻(𝑝)   0 (𝑓,𝑝)

Proof of Theorem prjcrvfval
Dummy variables 𝑛 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prjcrvfval.n . 2 (𝜑𝑁 ∈ ℕ0)
2 prjcrvfval.k . 2 (𝜑𝐾 ∈ Field)
3 oveq2 7357 . . . . . . . 8 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
4 oveq12 7358 . . . . . . . 8 (((0...𝑛) = (0...𝑁) ∧ 𝑘 = 𝐾) → ((0...𝑛) mHomP 𝑘) = ((0...𝑁) mHomP 𝐾))
53, 4sylan 580 . . . . . . 7 ((𝑛 = 𝑁𝑘 = 𝐾) → ((0...𝑛) mHomP 𝑘) = ((0...𝑁) mHomP 𝐾))
6 prjcrvfval.h . . . . . . 7 𝐻 = ((0...𝑁) mHomP 𝐾)
75, 6eqtr4di 2782 . . . . . 6 ((𝑛 = 𝑁𝑘 = 𝐾) → ((0...𝑛) mHomP 𝑘) = 𝐻)
87rneqd 5880 . . . . 5 ((𝑛 = 𝑁𝑘 = 𝐾) → ran ((0...𝑛) mHomP 𝑘) = ran 𝐻)
98unieqd 4871 . . . 4 ((𝑛 = 𝑁𝑘 = 𝐾) → ran ((0...𝑛) mHomP 𝑘) = ran 𝐻)
10 oveq12 7358 . . . . . 6 ((𝑛 = 𝑁𝑘 = 𝐾) → (𝑛ℙ𝕣𝕠𝕛n𝑘) = (𝑁ℙ𝕣𝕠𝕛n𝐾))
11 prjcrvfval.p . . . . . 6 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)
1210, 11eqtr4di 2782 . . . . 5 ((𝑛 = 𝑁𝑘 = 𝐾) → (𝑛ℙ𝕣𝕠𝕛n𝑘) = 𝑃)
13 id 22 . . . . . . . . . 10 (𝑘 = 𝐾𝑘 = 𝐾)
143, 13oveqan12d 7368 . . . . . . . . 9 ((𝑛 = 𝑁𝑘 = 𝐾) → ((0...𝑛) eval 𝑘) = ((0...𝑁) eval 𝐾))
15 prjcrvfval.e . . . . . . . . 9 𝐸 = ((0...𝑁) eval 𝐾)
1614, 15eqtr4di 2782 . . . . . . . 8 ((𝑛 = 𝑁𝑘 = 𝐾) → ((0...𝑛) eval 𝑘) = 𝐸)
1716fveq1d 6824 . . . . . . 7 ((𝑛 = 𝑁𝑘 = 𝐾) → (((0...𝑛) eval 𝑘)‘𝑓) = (𝐸𝑓))
1817imaeq1d 6010 . . . . . 6 ((𝑛 = 𝑁𝑘 = 𝐾) → ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = ((𝐸𝑓) “ 𝑝))
19 fveq2 6822 . . . . . . . . 9 (𝑘 = 𝐾 → (0g𝑘) = (0g𝐾))
20 prjcrvfval.0 . . . . . . . . 9 0 = (0g𝐾)
2119, 20eqtr4di 2782 . . . . . . . 8 (𝑘 = 𝐾 → (0g𝑘) = 0 )
2221adantl 481 . . . . . . 7 ((𝑛 = 𝑁𝑘 = 𝐾) → (0g𝑘) = 0 )
2322sneqd 4589 . . . . . 6 ((𝑛 = 𝑁𝑘 = 𝐾) → {(0g𝑘)} = { 0 })
2418, 23eqeq12d 2745 . . . . 5 ((𝑛 = 𝑁𝑘 = 𝐾) → (((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g𝑘)} ↔ ((𝐸𝑓) “ 𝑝) = { 0 }))
2512, 24rabeqbidv 3413 . . . 4 ((𝑛 = 𝑁𝑘 = 𝐾) → {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g𝑘)}} = {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }})
269, 25mpteq12dv 5179 . . 3 ((𝑛 = 𝑁𝑘 = 𝐾) → (𝑓 ran ((0...𝑛) mHomP 𝑘) ↦ {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g𝑘)}}) = (𝑓 ran 𝐻 ↦ {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }}))
27 df-prjcrv 42603 . . 3 ℙ𝕣𝕠𝕛Crv = (𝑛 ∈ ℕ0, 𝑘 ∈ Field ↦ (𝑓 ran ((0...𝑛) mHomP 𝑘) ↦ {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g𝑘)}}))
286ovexi 7383 . . . . . 6 𝐻 ∈ V
2928rnex 7843 . . . . 5 ran 𝐻 ∈ V
3029uniex 7677 . . . 4 ran 𝐻 ∈ V
3130mptex 7159 . . 3 (𝑓 ran 𝐻 ↦ {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }}) ∈ V
3226, 27, 31ovmpoa 7504 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ Field) → (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ran 𝐻 ↦ {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }}))
331, 2, 32syl2anc 584 1 (𝜑 → (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ran 𝐻 ↦ {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3394  {csn 4577   cuni 4858  cmpt 5173  ran crn 5620  cima 5622  cfv 6482  (class class class)co 7349  0cc0 11009  0cn0 12384  ...cfz 13410  0gc0g 17343  Fieldcfield 20615   eval cevl 21978   mHomP cmhp 22014  ℙ𝕣𝕠𝕛ncprjspn 42587  ℙ𝕣𝕠𝕛Crvcprjcrv 42602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-prjcrv 42603
This theorem is referenced by:  prjcrvval  42605
  Copyright terms: Public domain W3C validator