Step | Hyp | Ref
| Expression |
1 | | prjcrvfval.n |
. 2
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
2 | | prjcrvfval.k |
. 2
⊢ (𝜑 → 𝐾 ∈ Field) |
3 | | oveq2 7277 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁)) |
4 | | oveq12 7278 |
. . . . . . . 8
⊢
(((0...𝑛) =
(0...𝑁) ∧ 𝑘 = 𝐾) → ((0...𝑛) mHomP 𝑘) = ((0...𝑁) mHomP 𝐾)) |
5 | 3, 4 | sylan 580 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑘 = 𝐾) → ((0...𝑛) mHomP 𝑘) = ((0...𝑁) mHomP 𝐾)) |
6 | | prjcrvfval.h |
. . . . . . 7
⊢ 𝐻 = ((0...𝑁) mHomP 𝐾) |
7 | 5, 6 | eqtr4di 2798 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑘 = 𝐾) → ((0...𝑛) mHomP 𝑘) = 𝐻) |
8 | 7 | rneqd 5845 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑘 = 𝐾) → ran ((0...𝑛) mHomP 𝑘) = ran 𝐻) |
9 | 8 | unieqd 4859 |
. . . 4
⊢ ((𝑛 = 𝑁 ∧ 𝑘 = 𝐾) → ∪ ran
((0...𝑛) mHomP 𝑘) = ∪
ran 𝐻) |
10 | | oveq12 7278 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑘 = 𝐾) → (𝑛ℙ𝕣𝕠𝕛n𝑘) = (𝑁ℙ𝕣𝕠𝕛n𝐾)) |
11 | | prjcrvfval.p |
. . . . . 6
⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) |
12 | 10, 11 | eqtr4di 2798 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑘 = 𝐾) → (𝑛ℙ𝕣𝕠𝕛n𝑘) = 𝑃) |
13 | | id 22 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐾 → 𝑘 = 𝐾) |
14 | 3, 13 | oveqan12d 7288 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑘 = 𝐾) → ((0...𝑛) eval 𝑘) = ((0...𝑁) eval 𝐾)) |
15 | | prjcrvfval.e |
. . . . . . . . 9
⊢ 𝐸 = ((0...𝑁) eval 𝐾) |
16 | 14, 15 | eqtr4di 2798 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑘 = 𝐾) → ((0...𝑛) eval 𝑘) = 𝐸) |
17 | 16 | fveq1d 6771 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑘 = 𝐾) → (((0...𝑛) eval 𝑘)‘𝑓) = (𝐸‘𝑓)) |
18 | 17 | imaeq1d 5966 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑘 = 𝐾) → ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = ((𝐸‘𝑓) “ 𝑝)) |
19 | | fveq2 6769 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → (0g‘𝑘) = (0g‘𝐾)) |
20 | | prjcrvfval.0 |
. . . . . . . . 9
⊢ 0 =
(0g‘𝐾) |
21 | 19, 20 | eqtr4di 2798 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (0g‘𝑘) = 0 ) |
22 | 21 | adantl 482 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑘 = 𝐾) → (0g‘𝑘) = 0 ) |
23 | 22 | sneqd 4579 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑘 = 𝐾) → {(0g‘𝑘)} = { 0 }) |
24 | 18, 23 | eqeq12d 2756 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑘 = 𝐾) → (((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g‘𝑘)} ↔ ((𝐸‘𝑓) “ 𝑝) = { 0 })) |
25 | 12, 24 | rabeqbidv 3419 |
. . . 4
⊢ ((𝑛 = 𝑁 ∧ 𝑘 = 𝐾) → {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g‘𝑘)}} = {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝑓) “ 𝑝) = { 0 }}) |
26 | 9, 25 | mpteq12dv 5170 |
. . 3
⊢ ((𝑛 = 𝑁 ∧ 𝑘 = 𝐾) → (𝑓 ∈ ∪ ran
((0...𝑛) mHomP 𝑘) ↦ {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g‘𝑘)}}) = (𝑓 ∈ ∪ ran 𝐻 ↦ {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝑓) “ 𝑝) = { 0 }})) |
27 | | df-prjcrv 40456 |
. . 3
⊢
ℙ𝕣𝕠𝕛Crv = (𝑛 ∈ ℕ0, 𝑘 ∈ Field ↦ (𝑓 ∈ ∪ ran ((0...𝑛) mHomP 𝑘) ↦ {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g‘𝑘)}})) |
28 | 6 | ovexi 7303 |
. . . . . 6
⊢ 𝐻 ∈ V |
29 | 28 | rnex 7747 |
. . . . 5
⊢ ran 𝐻 ∈ V |
30 | 29 | uniex 7586 |
. . . 4
⊢ ∪ ran 𝐻 ∈ V |
31 | 30 | mptex 7094 |
. . 3
⊢ (𝑓 ∈ ∪ ran 𝐻 ↦ {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝑓) “ 𝑝) = { 0 }}) ∈
V |
32 | 26, 27, 31 | ovmpoa 7420 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐾 ∈ Field)
→ (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ∈ ∪ ran
𝐻 ↦ {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝑓) “ 𝑝) = { 0 }})) |
33 | 1, 2, 32 | syl2anc 584 |
1
⊢ (𝜑 → (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ∈ ∪ ran
𝐻 ↦ {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝑓) “ 𝑝) = { 0 }})) |