Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjcrvfval Structured version   Visualization version   GIF version

Theorem prjcrvfval 40457
Description: Value of the projective curve function. (Contributed by SN, 23-Nov-2024.)
Hypotheses
Ref Expression
prjcrvfval.h 𝐻 = ((0...𝑁) mHomP 𝐾)
prjcrvfval.e 𝐸 = ((0...𝑁) eval 𝐾)
prjcrvfval.p 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)
prjcrvfval.0 0 = (0g𝐾)
prjcrvfval.n (𝜑𝑁 ∈ ℕ0)
prjcrvfval.k (𝜑𝐾 ∈ Field)
Assertion
Ref Expression
prjcrvfval (𝜑 → (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ran 𝐻 ↦ {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }}))
Distinct variable groups:   𝑓,𝑁,𝑝   𝑓,𝐾,𝑝   𝑃,𝑝   𝑓,𝐻
Allowed substitution hints:   𝜑(𝑓,𝑝)   𝑃(𝑓)   𝐸(𝑓,𝑝)   𝐻(𝑝)   0 (𝑓,𝑝)

Proof of Theorem prjcrvfval
Dummy variables 𝑛 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prjcrvfval.n . 2 (𝜑𝑁 ∈ ℕ0)
2 prjcrvfval.k . 2 (𝜑𝐾 ∈ Field)
3 oveq2 7277 . . . . . . . 8 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
4 oveq12 7278 . . . . . . . 8 (((0...𝑛) = (0...𝑁) ∧ 𝑘 = 𝐾) → ((0...𝑛) mHomP 𝑘) = ((0...𝑁) mHomP 𝐾))
53, 4sylan 580 . . . . . . 7 ((𝑛 = 𝑁𝑘 = 𝐾) → ((0...𝑛) mHomP 𝑘) = ((0...𝑁) mHomP 𝐾))
6 prjcrvfval.h . . . . . . 7 𝐻 = ((0...𝑁) mHomP 𝐾)
75, 6eqtr4di 2798 . . . . . 6 ((𝑛 = 𝑁𝑘 = 𝐾) → ((0...𝑛) mHomP 𝑘) = 𝐻)
87rneqd 5845 . . . . 5 ((𝑛 = 𝑁𝑘 = 𝐾) → ran ((0...𝑛) mHomP 𝑘) = ran 𝐻)
98unieqd 4859 . . . 4 ((𝑛 = 𝑁𝑘 = 𝐾) → ran ((0...𝑛) mHomP 𝑘) = ran 𝐻)
10 oveq12 7278 . . . . . 6 ((𝑛 = 𝑁𝑘 = 𝐾) → (𝑛ℙ𝕣𝕠𝕛n𝑘) = (𝑁ℙ𝕣𝕠𝕛n𝐾))
11 prjcrvfval.p . . . . . 6 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)
1210, 11eqtr4di 2798 . . . . 5 ((𝑛 = 𝑁𝑘 = 𝐾) → (𝑛ℙ𝕣𝕠𝕛n𝑘) = 𝑃)
13 id 22 . . . . . . . . . 10 (𝑘 = 𝐾𝑘 = 𝐾)
143, 13oveqan12d 7288 . . . . . . . . 9 ((𝑛 = 𝑁𝑘 = 𝐾) → ((0...𝑛) eval 𝑘) = ((0...𝑁) eval 𝐾))
15 prjcrvfval.e . . . . . . . . 9 𝐸 = ((0...𝑁) eval 𝐾)
1614, 15eqtr4di 2798 . . . . . . . 8 ((𝑛 = 𝑁𝑘 = 𝐾) → ((0...𝑛) eval 𝑘) = 𝐸)
1716fveq1d 6771 . . . . . . 7 ((𝑛 = 𝑁𝑘 = 𝐾) → (((0...𝑛) eval 𝑘)‘𝑓) = (𝐸𝑓))
1817imaeq1d 5966 . . . . . 6 ((𝑛 = 𝑁𝑘 = 𝐾) → ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = ((𝐸𝑓) “ 𝑝))
19 fveq2 6769 . . . . . . . . 9 (𝑘 = 𝐾 → (0g𝑘) = (0g𝐾))
20 prjcrvfval.0 . . . . . . . . 9 0 = (0g𝐾)
2119, 20eqtr4di 2798 . . . . . . . 8 (𝑘 = 𝐾 → (0g𝑘) = 0 )
2221adantl 482 . . . . . . 7 ((𝑛 = 𝑁𝑘 = 𝐾) → (0g𝑘) = 0 )
2322sneqd 4579 . . . . . 6 ((𝑛 = 𝑁𝑘 = 𝐾) → {(0g𝑘)} = { 0 })
2418, 23eqeq12d 2756 . . . . 5 ((𝑛 = 𝑁𝑘 = 𝐾) → (((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g𝑘)} ↔ ((𝐸𝑓) “ 𝑝) = { 0 }))
2512, 24rabeqbidv 3419 . . . 4 ((𝑛 = 𝑁𝑘 = 𝐾) → {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g𝑘)}} = {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }})
269, 25mpteq12dv 5170 . . 3 ((𝑛 = 𝑁𝑘 = 𝐾) → (𝑓 ran ((0...𝑛) mHomP 𝑘) ↦ {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g𝑘)}}) = (𝑓 ran 𝐻 ↦ {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }}))
27 df-prjcrv 40456 . . 3 ℙ𝕣𝕠𝕛Crv = (𝑛 ∈ ℕ0, 𝑘 ∈ Field ↦ (𝑓 ran ((0...𝑛) mHomP 𝑘) ↦ {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g𝑘)}}))
286ovexi 7303 . . . . . 6 𝐻 ∈ V
2928rnex 7747 . . . . 5 ran 𝐻 ∈ V
3029uniex 7586 . . . 4 ran 𝐻 ∈ V
3130mptex 7094 . . 3 (𝑓 ran 𝐻 ↦ {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }}) ∈ V
3226, 27, 31ovmpoa 7420 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ Field) → (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ran 𝐻 ↦ {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }}))
331, 2, 32syl2anc 584 1 (𝜑 → (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ran 𝐻 ↦ {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  {crab 3070  {csn 4567   cuni 4845  cmpt 5162  ran crn 5590  cima 5592  cfv 6431  (class class class)co 7269  0cc0 10864  0cn0 12225  ...cfz 13230  0gc0g 17140  Fieldcfield 19982   eval cevl 21271   mHomP cmhp 21309  ℙ𝕣𝕠𝕛ncprjspn 40442  ℙ𝕣𝕠𝕛Crvcprjcrv 40455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-ov 7272  df-oprab 7273  df-mpo 7274  df-prjcrv 40456
This theorem is referenced by:  prjcrvval  40458
  Copyright terms: Public domain W3C validator