Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjcrvfval Structured version   Visualization version   GIF version

Theorem prjcrvfval 42629
Description: Value of the projective curve function. (Contributed by SN, 23-Nov-2024.)
Hypotheses
Ref Expression
prjcrvfval.h 𝐻 = ((0...𝑁) mHomP 𝐾)
prjcrvfval.e 𝐸 = ((0...𝑁) eval 𝐾)
prjcrvfval.p 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)
prjcrvfval.0 0 = (0g𝐾)
prjcrvfval.n (𝜑𝑁 ∈ ℕ0)
prjcrvfval.k (𝜑𝐾 ∈ Field)
Assertion
Ref Expression
prjcrvfval (𝜑 → (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ran 𝐻 ↦ {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }}))
Distinct variable groups:   𝑓,𝑁,𝑝   𝑓,𝐾,𝑝   𝑃,𝑝   𝑓,𝐻
Allowed substitution hints:   𝜑(𝑓,𝑝)   𝑃(𝑓)   𝐸(𝑓,𝑝)   𝐻(𝑝)   0 (𝑓,𝑝)

Proof of Theorem prjcrvfval
Dummy variables 𝑛 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prjcrvfval.n . 2 (𝜑𝑁 ∈ ℕ0)
2 prjcrvfval.k . 2 (𝜑𝐾 ∈ Field)
3 oveq2 7418 . . . . . . . 8 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
4 oveq12 7419 . . . . . . . 8 (((0...𝑛) = (0...𝑁) ∧ 𝑘 = 𝐾) → ((0...𝑛) mHomP 𝑘) = ((0...𝑁) mHomP 𝐾))
53, 4sylan 580 . . . . . . 7 ((𝑛 = 𝑁𝑘 = 𝐾) → ((0...𝑛) mHomP 𝑘) = ((0...𝑁) mHomP 𝐾))
6 prjcrvfval.h . . . . . . 7 𝐻 = ((0...𝑁) mHomP 𝐾)
75, 6eqtr4di 2789 . . . . . 6 ((𝑛 = 𝑁𝑘 = 𝐾) → ((0...𝑛) mHomP 𝑘) = 𝐻)
87rneqd 5923 . . . . 5 ((𝑛 = 𝑁𝑘 = 𝐾) → ran ((0...𝑛) mHomP 𝑘) = ran 𝐻)
98unieqd 4901 . . . 4 ((𝑛 = 𝑁𝑘 = 𝐾) → ran ((0...𝑛) mHomP 𝑘) = ran 𝐻)
10 oveq12 7419 . . . . . 6 ((𝑛 = 𝑁𝑘 = 𝐾) → (𝑛ℙ𝕣𝕠𝕛n𝑘) = (𝑁ℙ𝕣𝕠𝕛n𝐾))
11 prjcrvfval.p . . . . . 6 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)
1210, 11eqtr4di 2789 . . . . 5 ((𝑛 = 𝑁𝑘 = 𝐾) → (𝑛ℙ𝕣𝕠𝕛n𝑘) = 𝑃)
13 id 22 . . . . . . . . . 10 (𝑘 = 𝐾𝑘 = 𝐾)
143, 13oveqan12d 7429 . . . . . . . . 9 ((𝑛 = 𝑁𝑘 = 𝐾) → ((0...𝑛) eval 𝑘) = ((0...𝑁) eval 𝐾))
15 prjcrvfval.e . . . . . . . . 9 𝐸 = ((0...𝑁) eval 𝐾)
1614, 15eqtr4di 2789 . . . . . . . 8 ((𝑛 = 𝑁𝑘 = 𝐾) → ((0...𝑛) eval 𝑘) = 𝐸)
1716fveq1d 6883 . . . . . . 7 ((𝑛 = 𝑁𝑘 = 𝐾) → (((0...𝑛) eval 𝑘)‘𝑓) = (𝐸𝑓))
1817imaeq1d 6051 . . . . . 6 ((𝑛 = 𝑁𝑘 = 𝐾) → ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = ((𝐸𝑓) “ 𝑝))
19 fveq2 6881 . . . . . . . . 9 (𝑘 = 𝐾 → (0g𝑘) = (0g𝐾))
20 prjcrvfval.0 . . . . . . . . 9 0 = (0g𝐾)
2119, 20eqtr4di 2789 . . . . . . . 8 (𝑘 = 𝐾 → (0g𝑘) = 0 )
2221adantl 481 . . . . . . 7 ((𝑛 = 𝑁𝑘 = 𝐾) → (0g𝑘) = 0 )
2322sneqd 4618 . . . . . 6 ((𝑛 = 𝑁𝑘 = 𝐾) → {(0g𝑘)} = { 0 })
2418, 23eqeq12d 2752 . . . . 5 ((𝑛 = 𝑁𝑘 = 𝐾) → (((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g𝑘)} ↔ ((𝐸𝑓) “ 𝑝) = { 0 }))
2512, 24rabeqbidv 3439 . . . 4 ((𝑛 = 𝑁𝑘 = 𝐾) → {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g𝑘)}} = {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }})
269, 25mpteq12dv 5212 . . 3 ((𝑛 = 𝑁𝑘 = 𝐾) → (𝑓 ran ((0...𝑛) mHomP 𝑘) ↦ {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g𝑘)}}) = (𝑓 ran 𝐻 ↦ {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }}))
27 df-prjcrv 42628 . . 3 ℙ𝕣𝕠𝕛Crv = (𝑛 ∈ ℕ0, 𝑘 ∈ Field ↦ (𝑓 ran ((0...𝑛) mHomP 𝑘) ↦ {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g𝑘)}}))
286ovexi 7444 . . . . . 6 𝐻 ∈ V
2928rnex 7911 . . . . 5 ran 𝐻 ∈ V
3029uniex 7740 . . . 4 ran 𝐻 ∈ V
3130mptex 7220 . . 3 (𝑓 ran 𝐻 ↦ {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }}) ∈ V
3226, 27, 31ovmpoa 7567 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ Field) → (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ran 𝐻 ↦ {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }}))
331, 2, 32syl2anc 584 1 (𝜑 → (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ran 𝐻 ↦ {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3420  {csn 4606   cuni 4888  cmpt 5206  ran crn 5660  cima 5662  cfv 6536  (class class class)co 7410  0cc0 11134  0cn0 12506  ...cfz 13529  0gc0g 17458  Fieldcfield 20695   eval cevl 22036   mHomP cmhp 22072  ℙ𝕣𝕠𝕛ncprjspn 42612  ℙ𝕣𝕠𝕛Crvcprjcrv 42627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-prjcrv 42628
This theorem is referenced by:  prjcrvval  42630
  Copyright terms: Public domain W3C validator