Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspvs Structured version   Visualization version   GIF version

Theorem prjspvs 42264
Description: A nonzero multiple of a vector is equivalent to the vector. (Contributed by Steven Nguyen, 6-Jun-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
prjspreln0.z 0 = (0g𝑆)
Assertion
Ref Expression
prjspvs ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) 𝑋)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙   𝑁,𝑙,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   𝑉(𝑥,𝑦,𝑙)   0 (𝑥,𝑦,𝑙)

Proof of Theorem prjspvs
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . . . 5 (Base‘𝑉) = (Base‘𝑉)
2 prjspertr.s . . . . 5 𝑆 = (Scalar‘𝑉)
3 prjspertr.x . . . . 5 · = ( ·𝑠𝑉)
4 prjspertr.k . . . . 5 𝐾 = (Base‘𝑆)
5 lveclmod 21084 . . . . . 6 (𝑉 ∈ LVec → 𝑉 ∈ LMod)
653ad2ant1 1130 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑉 ∈ LMod)
7 eldifi 4126 . . . . . 6 (𝑁 ∈ (𝐾 ∖ { 0 }) → 𝑁𝐾)
873ad2ant3 1132 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑁𝐾)
9 prjspertr.b . . . . . . . 8 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
10 difss 4131 . . . . . . . 8 ((Base‘𝑉) ∖ {(0g𝑉)}) ⊆ (Base‘𝑉)
119, 10eqsstri 4014 . . . . . . 7 𝐵 ⊆ (Base‘𝑉)
1211sseli 3975 . . . . . 6 (𝑋𝐵𝑋 ∈ (Base‘𝑉))
13123ad2ant2 1131 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋 ∈ (Base‘𝑉))
141, 2, 3, 4, 6, 8, 13lmodvscld 20855 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ (Base‘𝑉))
15 eldifsni 4799 . . . . . . 7 (𝑁 ∈ (𝐾 ∖ { 0 }) → 𝑁0 )
16153ad2ant3 1132 . . . . . 6 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑁0 )
17 eldifsni 4799 . . . . . . . 8 (𝑋 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑋 ≠ (0g𝑉))
1817, 9eleq2s 2844 . . . . . . 7 (𝑋𝐵𝑋 ≠ (0g𝑉))
19183ad2ant2 1131 . . . . . 6 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋 ≠ (0g𝑉))
20 prjspreln0.z . . . . . . 7 0 = (0g𝑆)
21 eqid 2726 . . . . . . 7 (0g𝑉) = (0g𝑉)
22 simp1 1133 . . . . . . 7 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑉 ∈ LVec)
231, 3, 2, 4, 20, 21, 22, 8, 13lvecvsn0 21090 . . . . . 6 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → ((𝑁 · 𝑋) ≠ (0g𝑉) ↔ (𝑁0𝑋 ≠ (0g𝑉))))
2416, 19, 23mpbir2and 711 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ≠ (0g𝑉))
25 nelsn 4673 . . . . 5 ((𝑁 · 𝑋) ≠ (0g𝑉) → ¬ (𝑁 · 𝑋) ∈ {(0g𝑉)})
2624, 25syl 17 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → ¬ (𝑁 · 𝑋) ∈ {(0g𝑉)})
2714, 26eldifd 3958 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ ((Base‘𝑉) ∖ {(0g𝑉)}))
2827, 9eleqtrrdi 2837 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ 𝐵)
29 simp2 1134 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋𝐵)
30 oveq1 7431 . . . . . 6 (𝑁 = 𝑚 → (𝑁 · 𝑋) = (𝑚 · 𝑋))
3130eqcoms 2734 . . . . 5 (𝑚 = 𝑁 → (𝑁 · 𝑋) = (𝑚 · 𝑋))
32 tbtru 1542 . . . . 5 ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ⊤))
3331, 32sylib 217 . . . 4 (𝑚 = 𝑁 → ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ⊤))
3433adantl 480 . . 3 (((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) ∧ 𝑚 = 𝑁) → ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ⊤))
35 trud 1544 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → ⊤)
368, 34, 35rspcedvd 3610 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → ∃𝑚𝐾 (𝑁 · 𝑋) = (𝑚 · 𝑋))
37 prjsprel.1 . . 3 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
3837prjsprel 42258 . 2 ((𝑁 · 𝑋) 𝑋 ↔ (((𝑁 · 𝑋) ∈ 𝐵𝑋𝐵) ∧ ∃𝑚𝐾 (𝑁 · 𝑋) = (𝑚 · 𝑋)))
3928, 29, 36, 38syl21anbrc 1341 1 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wtru 1535  wcel 2099  wne 2930  wrex 3060  cdif 3944  {csn 4633   class class class wbr 5153  {copab 5215  cfv 6554  (class class class)co 7424  Basecbs 17213  Scalarcsca 17269   ·𝑠 cvsca 17270  0gc0g 17454  LModclmod 20836  LVecclvec 21080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-2nd 8004  df-tpos 8241  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-0g 17456  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-grp 18931  df-minusg 18932  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-ring 20218  df-oppr 20316  df-dvdsr 20339  df-unit 20340  df-invr 20370  df-drng 20709  df-lmod 20838  df-lvec 21081
This theorem is referenced by:  prjspnvs  42274
  Copyright terms: Public domain W3C validator