Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspvs Structured version   Visualization version   GIF version

Theorem prjspvs 42596
Description: A nonzero multiple of a vector is equivalent to the vector. (Contributed by Steven Nguyen, 6-Jun-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
prjspreln0.z 0 = (0g𝑆)
Assertion
Ref Expression
prjspvs ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) 𝑋)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙   𝑁,𝑙,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   𝑉(𝑥,𝑦,𝑙)   0 (𝑥,𝑦,𝑙)

Proof of Theorem prjspvs
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . . 5 (Base‘𝑉) = (Base‘𝑉)
2 prjspertr.s . . . . 5 𝑆 = (Scalar‘𝑉)
3 prjspertr.x . . . . 5 · = ( ·𝑠𝑉)
4 prjspertr.k . . . . 5 𝐾 = (Base‘𝑆)
5 lveclmod 21122 . . . . . 6 (𝑉 ∈ LVec → 𝑉 ∈ LMod)
653ad2ant1 1132 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑉 ∈ LMod)
7 eldifi 4140 . . . . . 6 (𝑁 ∈ (𝐾 ∖ { 0 }) → 𝑁𝐾)
873ad2ant3 1134 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑁𝐾)
9 prjspertr.b . . . . . . . 8 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
10 difss 4145 . . . . . . . 8 ((Base‘𝑉) ∖ {(0g𝑉)}) ⊆ (Base‘𝑉)
119, 10eqsstri 4029 . . . . . . 7 𝐵 ⊆ (Base‘𝑉)
1211sseli 3990 . . . . . 6 (𝑋𝐵𝑋 ∈ (Base‘𝑉))
13123ad2ant2 1133 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋 ∈ (Base‘𝑉))
141, 2, 3, 4, 6, 8, 13lmodvscld 20893 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ (Base‘𝑉))
15 eldifsni 4794 . . . . . 6 (𝑁 ∈ (𝐾 ∖ { 0 }) → 𝑁0 )
16153ad2ant3 1134 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑁0 )
17 eldifsni 4794 . . . . . . 7 (𝑋 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑋 ≠ (0g𝑉))
1817, 9eleq2s 2856 . . . . . 6 (𝑋𝐵𝑋 ≠ (0g𝑉))
19183ad2ant2 1133 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋 ≠ (0g𝑉))
20 prjspreln0.z . . . . . 6 0 = (0g𝑆)
21 eqid 2734 . . . . . 6 (0g𝑉) = (0g𝑉)
22 simp1 1135 . . . . . 6 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑉 ∈ LVec)
231, 3, 2, 4, 20, 21, 22, 8, 13lvecvsn0 21128 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → ((𝑁 · 𝑋) ≠ (0g𝑉) ↔ (𝑁0𝑋 ≠ (0g𝑉))))
2416, 19, 23mpbir2and 713 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ≠ (0g𝑉))
2514, 24eldifsnd 4791 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ ((Base‘𝑉) ∖ {(0g𝑉)}))
2625, 9eleqtrrdi 2849 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ 𝐵)
27 simp2 1136 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋𝐵)
28 oveq1 7437 . . . . 5 (𝑁 = 𝑚 → (𝑁 · 𝑋) = (𝑚 · 𝑋))
2928eqcoms 2742 . . . 4 (𝑚 = 𝑁 → (𝑁 · 𝑋) = (𝑚 · 𝑋))
30 tbtru 1544 . . . 4 ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ⊤))
3129, 30sylib 218 . . 3 (𝑚 = 𝑁 → ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ⊤))
32 trud 1546 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → ⊤)
3331, 8, 32rspcedvdw 3624 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → ∃𝑚𝐾 (𝑁 · 𝑋) = (𝑚 · 𝑋))
34 prjsprel.1 . . 3 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
3534prjsprel 42590 . 2 ((𝑁 · 𝑋) 𝑋 ↔ (((𝑁 · 𝑋) ∈ 𝐵𝑋𝐵) ∧ ∃𝑚𝐾 (𝑁 · 𝑋) = (𝑚 · 𝑋)))
3626, 27, 33, 35syl21anbrc 1343 1 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wtru 1537  wcel 2105  wne 2937  wrex 3067  cdif 3959  {csn 4630   class class class wbr 5147  {copab 5209  cfv 6562  (class class class)co 7430  Basecbs 17244  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17485  LModclmod 20874  LVecclvec 21118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-invr 20404  df-drng 20747  df-lmod 20876  df-lvec 21119
This theorem is referenced by:  prjspnvs  42606
  Copyright terms: Public domain W3C validator