| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspvs | Structured version Visualization version GIF version | ||
| Description: A nonzero multiple of a vector is equivalent to the vector. (Contributed by Steven Nguyen, 6-Jun-2023.) |
| Ref | Expression |
|---|---|
| prjsprel.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} |
| prjspertr.b | ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) |
| prjspertr.s | ⊢ 𝑆 = (Scalar‘𝑉) |
| prjspertr.x | ⊢ · = ( ·𝑠 ‘𝑉) |
| prjspertr.k | ⊢ 𝐾 = (Base‘𝑆) |
| prjspreln0.z | ⊢ 0 = (0g‘𝑆) |
| Ref | Expression |
|---|---|
| prjspvs | ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∼ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . . . 5 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
| 2 | prjspertr.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑉) | |
| 3 | prjspertr.x | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑉) | |
| 4 | prjspertr.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑆) | |
| 5 | lveclmod 21105 | . . . . . 6 ⊢ (𝑉 ∈ LVec → 𝑉 ∈ LMod) | |
| 6 | 5 | 3ad2ant1 1134 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑉 ∈ LMod) |
| 7 | eldifi 4131 | . . . . . 6 ⊢ (𝑁 ∈ (𝐾 ∖ { 0 }) → 𝑁 ∈ 𝐾) | |
| 8 | 7 | 3ad2ant3 1136 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑁 ∈ 𝐾) |
| 9 | prjspertr.b | . . . . . . . 8 ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) | |
| 10 | difss 4136 | . . . . . . . 8 ⊢ ((Base‘𝑉) ∖ {(0g‘𝑉)}) ⊆ (Base‘𝑉) | |
| 11 | 9, 10 | eqsstri 4030 | . . . . . . 7 ⊢ 𝐵 ⊆ (Base‘𝑉) |
| 12 | 11 | sseli 3979 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘𝑉)) |
| 13 | 12 | 3ad2ant2 1135 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋 ∈ (Base‘𝑉)) |
| 14 | 1, 2, 3, 4, 6, 8, 13 | lmodvscld 20877 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ (Base‘𝑉)) |
| 15 | eldifsni 4790 | . . . . . 6 ⊢ (𝑁 ∈ (𝐾 ∖ { 0 }) → 𝑁 ≠ 0 ) | |
| 16 | 15 | 3ad2ant3 1136 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑁 ≠ 0 ) |
| 17 | eldifsni 4790 | . . . . . . 7 ⊢ (𝑋 ∈ ((Base‘𝑉) ∖ {(0g‘𝑉)}) → 𝑋 ≠ (0g‘𝑉)) | |
| 18 | 17, 9 | eleq2s 2859 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ≠ (0g‘𝑉)) |
| 19 | 18 | 3ad2ant2 1135 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋 ≠ (0g‘𝑉)) |
| 20 | prjspreln0.z | . . . . . 6 ⊢ 0 = (0g‘𝑆) | |
| 21 | eqid 2737 | . . . . . 6 ⊢ (0g‘𝑉) = (0g‘𝑉) | |
| 22 | simp1 1137 | . . . . . 6 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑉 ∈ LVec) | |
| 23 | 1, 3, 2, 4, 20, 21, 22, 8, 13 | lvecvsn0 21111 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → ((𝑁 · 𝑋) ≠ (0g‘𝑉) ↔ (𝑁 ≠ 0 ∧ 𝑋 ≠ (0g‘𝑉)))) |
| 24 | 16, 19, 23 | mpbir2and 713 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ≠ (0g‘𝑉)) |
| 25 | 14, 24 | eldifsnd 4787 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ ((Base‘𝑉) ∖ {(0g‘𝑉)})) |
| 26 | 25, 9 | eleqtrrdi 2852 | . 2 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ 𝐵) |
| 27 | simp2 1138 | . 2 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋 ∈ 𝐵) | |
| 28 | oveq1 7438 | . . . . 5 ⊢ (𝑁 = 𝑚 → (𝑁 · 𝑋) = (𝑚 · 𝑋)) | |
| 29 | 28 | eqcoms 2745 | . . . 4 ⊢ (𝑚 = 𝑁 → (𝑁 · 𝑋) = (𝑚 · 𝑋)) |
| 30 | tbtru 1548 | . . . 4 ⊢ ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ⊤)) | |
| 31 | 29, 30 | sylib 218 | . . 3 ⊢ (𝑚 = 𝑁 → ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ⊤)) |
| 32 | trud 1550 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → ⊤) | |
| 33 | 31, 8, 32 | rspcedvdw 3625 | . 2 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → ∃𝑚 ∈ 𝐾 (𝑁 · 𝑋) = (𝑚 · 𝑋)) |
| 34 | prjsprel.1 | . . 3 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} | |
| 35 | 34 | prjsprel 42614 | . 2 ⊢ ((𝑁 · 𝑋) ∼ 𝑋 ↔ (((𝑁 · 𝑋) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 (𝑁 · 𝑋) = (𝑚 · 𝑋))) |
| 36 | 26, 27, 33, 35 | syl21anbrc 1345 | 1 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∼ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 ≠ wne 2940 ∃wrex 3070 ∖ cdif 3948 {csn 4626 class class class wbr 5143 {copab 5205 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 Scalarcsca 17300 ·𝑠 cvsca 17301 0gc0g 17484 LModclmod 20858 LVecclvec 21101 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-oppr 20334 df-dvdsr 20357 df-unit 20358 df-invr 20388 df-drng 20731 df-lmod 20860 df-lvec 21102 |
| This theorem is referenced by: prjspnvs 42630 |
| Copyright terms: Public domain | W3C validator |