| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspvs | Structured version Visualization version GIF version | ||
| Description: A nonzero multiple of a vector is equivalent to the vector. (Contributed by Steven Nguyen, 6-Jun-2023.) |
| Ref | Expression |
|---|---|
| prjsprel.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} |
| prjspertr.b | ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) |
| prjspertr.s | ⊢ 𝑆 = (Scalar‘𝑉) |
| prjspertr.x | ⊢ · = ( ·𝑠 ‘𝑉) |
| prjspertr.k | ⊢ 𝐾 = (Base‘𝑆) |
| prjspreln0.z | ⊢ 0 = (0g‘𝑆) |
| Ref | Expression |
|---|---|
| prjspvs | ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∼ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
| 2 | prjspertr.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑉) | |
| 3 | prjspertr.x | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑉) | |
| 4 | prjspertr.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑆) | |
| 5 | lveclmod 21041 | . . . . . 6 ⊢ (𝑉 ∈ LVec → 𝑉 ∈ LMod) | |
| 6 | 5 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑉 ∈ LMod) |
| 7 | eldifi 4081 | . . . . . 6 ⊢ (𝑁 ∈ (𝐾 ∖ { 0 }) → 𝑁 ∈ 𝐾) | |
| 8 | 7 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑁 ∈ 𝐾) |
| 9 | prjspertr.b | . . . . . . . 8 ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) | |
| 10 | difss 4086 | . . . . . . . 8 ⊢ ((Base‘𝑉) ∖ {(0g‘𝑉)}) ⊆ (Base‘𝑉) | |
| 11 | 9, 10 | eqsstri 3981 | . . . . . . 7 ⊢ 𝐵 ⊆ (Base‘𝑉) |
| 12 | 11 | sseli 3930 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘𝑉)) |
| 13 | 12 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋 ∈ (Base‘𝑉)) |
| 14 | 1, 2, 3, 4, 6, 8, 13 | lmodvscld 20813 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ (Base‘𝑉)) |
| 15 | eldifsni 4742 | . . . . . 6 ⊢ (𝑁 ∈ (𝐾 ∖ { 0 }) → 𝑁 ≠ 0 ) | |
| 16 | 15 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑁 ≠ 0 ) |
| 17 | eldifsni 4742 | . . . . . . 7 ⊢ (𝑋 ∈ ((Base‘𝑉) ∖ {(0g‘𝑉)}) → 𝑋 ≠ (0g‘𝑉)) | |
| 18 | 17, 9 | eleq2s 2849 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ≠ (0g‘𝑉)) |
| 19 | 18 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋 ≠ (0g‘𝑉)) |
| 20 | prjspreln0.z | . . . . . 6 ⊢ 0 = (0g‘𝑆) | |
| 21 | eqid 2731 | . . . . . 6 ⊢ (0g‘𝑉) = (0g‘𝑉) | |
| 22 | simp1 1136 | . . . . . 6 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑉 ∈ LVec) | |
| 23 | 1, 3, 2, 4, 20, 21, 22, 8, 13 | lvecvsn0 21047 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → ((𝑁 · 𝑋) ≠ (0g‘𝑉) ↔ (𝑁 ≠ 0 ∧ 𝑋 ≠ (0g‘𝑉)))) |
| 24 | 16, 19, 23 | mpbir2and 713 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ≠ (0g‘𝑉)) |
| 25 | 14, 24 | eldifsnd 4739 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ ((Base‘𝑉) ∖ {(0g‘𝑉)})) |
| 26 | 25, 9 | eleqtrrdi 2842 | . 2 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ 𝐵) |
| 27 | simp2 1137 | . 2 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋 ∈ 𝐵) | |
| 28 | oveq1 7353 | . . . . 5 ⊢ (𝑁 = 𝑚 → (𝑁 · 𝑋) = (𝑚 · 𝑋)) | |
| 29 | 28 | eqcoms 2739 | . . . 4 ⊢ (𝑚 = 𝑁 → (𝑁 · 𝑋) = (𝑚 · 𝑋)) |
| 30 | tbtru 1549 | . . . 4 ⊢ ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ⊤)) | |
| 31 | 29, 30 | sylib 218 | . . 3 ⊢ (𝑚 = 𝑁 → ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ⊤)) |
| 32 | trud 1551 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → ⊤) | |
| 33 | 31, 8, 32 | rspcedvdw 3580 | . 2 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → ∃𝑚 ∈ 𝐾 (𝑁 · 𝑋) = (𝑚 · 𝑋)) |
| 34 | prjsprel.1 | . . 3 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} | |
| 35 | 34 | prjsprel 42643 | . 2 ⊢ ((𝑁 · 𝑋) ∼ 𝑋 ↔ (((𝑁 · 𝑋) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 (𝑁 · 𝑋) = (𝑚 · 𝑋))) |
| 36 | 26, 27, 33, 35 | syl21anbrc 1345 | 1 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∼ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 ∖ cdif 3899 {csn 4576 class class class wbr 5091 {copab 5153 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 0gc0g 17343 LModclmod 20794 LVecclvec 21037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-ring 20154 df-oppr 20256 df-dvdsr 20276 df-unit 20277 df-invr 20307 df-drng 20647 df-lmod 20796 df-lvec 21038 |
| This theorem is referenced by: prjspnvs 42659 |
| Copyright terms: Public domain | W3C validator |