Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspvs Structured version   Visualization version   GIF version

Theorem prjspvs 42598
Description: A nonzero multiple of a vector is equivalent to the vector. (Contributed by Steven Nguyen, 6-Jun-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
prjspreln0.z 0 = (0g𝑆)
Assertion
Ref Expression
prjspvs ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) 𝑋)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙   𝑁,𝑙,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   𝑉(𝑥,𝑦,𝑙)   0 (𝑥,𝑦,𝑙)

Proof of Theorem prjspvs
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . 5 (Base‘𝑉) = (Base‘𝑉)
2 prjspertr.s . . . . 5 𝑆 = (Scalar‘𝑉)
3 prjspertr.x . . . . 5 · = ( ·𝑠𝑉)
4 prjspertr.k . . . . 5 𝐾 = (Base‘𝑆)
5 lveclmod 21013 . . . . . 6 (𝑉 ∈ LVec → 𝑉 ∈ LMod)
653ad2ant1 1133 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑉 ∈ LMod)
7 eldifi 4094 . . . . . 6 (𝑁 ∈ (𝐾 ∖ { 0 }) → 𝑁𝐾)
873ad2ant3 1135 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑁𝐾)
9 prjspertr.b . . . . . . . 8 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
10 difss 4099 . . . . . . . 8 ((Base‘𝑉) ∖ {(0g𝑉)}) ⊆ (Base‘𝑉)
119, 10eqsstri 3993 . . . . . . 7 𝐵 ⊆ (Base‘𝑉)
1211sseli 3942 . . . . . 6 (𝑋𝐵𝑋 ∈ (Base‘𝑉))
13123ad2ant2 1134 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋 ∈ (Base‘𝑉))
141, 2, 3, 4, 6, 8, 13lmodvscld 20785 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ (Base‘𝑉))
15 eldifsni 4754 . . . . . 6 (𝑁 ∈ (𝐾 ∖ { 0 }) → 𝑁0 )
16153ad2ant3 1135 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑁0 )
17 eldifsni 4754 . . . . . . 7 (𝑋 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑋 ≠ (0g𝑉))
1817, 9eleq2s 2846 . . . . . 6 (𝑋𝐵𝑋 ≠ (0g𝑉))
19183ad2ant2 1134 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋 ≠ (0g𝑉))
20 prjspreln0.z . . . . . 6 0 = (0g𝑆)
21 eqid 2729 . . . . . 6 (0g𝑉) = (0g𝑉)
22 simp1 1136 . . . . . 6 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑉 ∈ LVec)
231, 3, 2, 4, 20, 21, 22, 8, 13lvecvsn0 21019 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → ((𝑁 · 𝑋) ≠ (0g𝑉) ↔ (𝑁0𝑋 ≠ (0g𝑉))))
2416, 19, 23mpbir2and 713 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ≠ (0g𝑉))
2514, 24eldifsnd 4751 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ ((Base‘𝑉) ∖ {(0g𝑉)}))
2625, 9eleqtrrdi 2839 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ 𝐵)
27 simp2 1137 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋𝐵)
28 oveq1 7394 . . . . 5 (𝑁 = 𝑚 → (𝑁 · 𝑋) = (𝑚 · 𝑋))
2928eqcoms 2737 . . . 4 (𝑚 = 𝑁 → (𝑁 · 𝑋) = (𝑚 · 𝑋))
30 tbtru 1548 . . . 4 ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ⊤))
3129, 30sylib 218 . . 3 (𝑚 = 𝑁 → ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ⊤))
32 trud 1550 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → ⊤)
3331, 8, 32rspcedvdw 3591 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → ∃𝑚𝐾 (𝑁 · 𝑋) = (𝑚 · 𝑋))
34 prjsprel.1 . . 3 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
3534prjsprel 42592 . 2 ((𝑁 · 𝑋) 𝑋 ↔ (((𝑁 · 𝑋) ∈ 𝐵𝑋𝐵) ∧ ∃𝑚𝐾 (𝑁 · 𝑋) = (𝑚 · 𝑋)))
3626, 27, 33, 35syl21anbrc 1345 1 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wne 2925  wrex 3053  cdif 3911  {csn 4589   class class class wbr 5107  {copab 5169  cfv 6511  (class class class)co 7387  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402  LModclmod 20766  LVecclvec 21009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-drng 20640  df-lmod 20768  df-lvec 21010
This theorem is referenced by:  prjspnvs  42608
  Copyright terms: Public domain W3C validator