Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspvs | Structured version Visualization version GIF version |
Description: A nonzero multiple of a vector is equivalent to the vector. (Contributed by Steven Nguyen, 6-Jun-2023.) |
Ref | Expression |
---|---|
prjsprel.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} |
prjspertr.b | ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) |
prjspertr.s | ⊢ 𝑆 = (Scalar‘𝑉) |
prjspertr.x | ⊢ · = ( ·𝑠 ‘𝑉) |
prjspertr.k | ⊢ 𝐾 = (Base‘𝑆) |
prjspreln0.z | ⊢ 0 = (0g‘𝑆) |
Ref | Expression |
---|---|
prjspvs | ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∼ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lveclmod 20312 | . . . . . 6 ⊢ (𝑉 ∈ LVec → 𝑉 ∈ LMod) | |
2 | 1 | 3ad2ant1 1131 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑉 ∈ LMod) |
3 | eldifi 4062 | . . . . . 6 ⊢ (𝑁 ∈ (𝐾 ∖ { 0 }) → 𝑁 ∈ 𝐾) | |
4 | 3 | 3ad2ant3 1133 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑁 ∈ 𝐾) |
5 | prjspertr.b | . . . . . . . 8 ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) | |
6 | difss 4067 | . . . . . . . 8 ⊢ ((Base‘𝑉) ∖ {(0g‘𝑉)}) ⊆ (Base‘𝑉) | |
7 | 5, 6 | eqsstri 3956 | . . . . . . 7 ⊢ 𝐵 ⊆ (Base‘𝑉) |
8 | 7 | sseli 3918 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘𝑉)) |
9 | 8 | 3ad2ant2 1132 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋 ∈ (Base‘𝑉)) |
10 | eqid 2737 | . . . . . 6 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
11 | prjspertr.s | . . . . . 6 ⊢ 𝑆 = (Scalar‘𝑉) | |
12 | prjspertr.x | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑉) | |
13 | prjspertr.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑆) | |
14 | 10, 11, 12, 13 | lmodvscl 20084 | . . . . 5 ⊢ ((𝑉 ∈ LMod ∧ 𝑁 ∈ 𝐾 ∧ 𝑋 ∈ (Base‘𝑉)) → (𝑁 · 𝑋) ∈ (Base‘𝑉)) |
15 | 2, 4, 9, 14 | syl3anc 1369 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ (Base‘𝑉)) |
16 | eldifsni 4725 | . . . . . . 7 ⊢ (𝑁 ∈ (𝐾 ∖ { 0 }) → 𝑁 ≠ 0 ) | |
17 | 16 | 3ad2ant3 1133 | . . . . . 6 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑁 ≠ 0 ) |
18 | eldifsni 4725 | . . . . . . . 8 ⊢ (𝑋 ∈ ((Base‘𝑉) ∖ {(0g‘𝑉)}) → 𝑋 ≠ (0g‘𝑉)) | |
19 | 18, 5 | eleq2s 2855 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ≠ (0g‘𝑉)) |
20 | 19 | 3ad2ant2 1132 | . . . . . 6 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋 ≠ (0g‘𝑉)) |
21 | prjspreln0.z | . . . . . . 7 ⊢ 0 = (0g‘𝑆) | |
22 | eqid 2737 | . . . . . . 7 ⊢ (0g‘𝑉) = (0g‘𝑉) | |
23 | simp1 1134 | . . . . . . 7 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑉 ∈ LVec) | |
24 | 10, 12, 11, 13, 21, 22, 23, 4, 9 | lvecvsn0 20315 | . . . . . 6 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → ((𝑁 · 𝑋) ≠ (0g‘𝑉) ↔ (𝑁 ≠ 0 ∧ 𝑋 ≠ (0g‘𝑉)))) |
25 | 17, 20, 24 | mpbir2and 709 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ≠ (0g‘𝑉)) |
26 | nelsn 4603 | . . . . 5 ⊢ ((𝑁 · 𝑋) ≠ (0g‘𝑉) → ¬ (𝑁 · 𝑋) ∈ {(0g‘𝑉)}) | |
27 | 25, 26 | syl 17 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → ¬ (𝑁 · 𝑋) ∈ {(0g‘𝑉)}) |
28 | 15, 27 | eldifd 3899 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ ((Base‘𝑉) ∖ {(0g‘𝑉)})) |
29 | 28, 5 | eleqtrrdi 2848 | . 2 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ 𝐵) |
30 | simp2 1135 | . 2 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋 ∈ 𝐵) | |
31 | oveq1 7267 | . . . . . 6 ⊢ (𝑁 = 𝑚 → (𝑁 · 𝑋) = (𝑚 · 𝑋)) | |
32 | 31 | eqcoms 2745 | . . . . 5 ⊢ (𝑚 = 𝑁 → (𝑁 · 𝑋) = (𝑚 · 𝑋)) |
33 | tbtru 1547 | . . . . 5 ⊢ ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ⊤)) | |
34 | 32, 33 | sylib 217 | . . . 4 ⊢ (𝑚 = 𝑁 → ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ⊤)) |
35 | 34 | adantl 481 | . . 3 ⊢ (((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) ∧ 𝑚 = 𝑁) → ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ⊤)) |
36 | trud 1549 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → ⊤) | |
37 | 4, 35, 36 | rspcedvd 3560 | . 2 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → ∃𝑚 ∈ 𝐾 (𝑁 · 𝑋) = (𝑚 · 𝑋)) |
38 | prjsprel.1 | . . 3 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} | |
39 | 38 | prjsprel 40406 | . 2 ⊢ ((𝑁 · 𝑋) ∼ 𝑋 ↔ (((𝑁 · 𝑋) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 (𝑁 · 𝑋) = (𝑚 · 𝑋))) |
40 | 29, 30, 37, 39 | syl21anbrc 1342 | 1 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∼ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 ≠ wne 2941 ∃wrex 3063 ∖ cdif 3885 {csn 4563 class class class wbr 5075 {copab 5137 ‘cfv 6423 (class class class)co 7260 Basecbs 16856 Scalarcsca 16909 ·𝑠 cvsca 16910 0gc0g 17094 LModclmod 20067 LVecclvec 20308 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7571 ax-cnex 10874 ax-resscn 10875 ax-1cn 10876 ax-icn 10877 ax-addcl 10878 ax-addrcl 10879 ax-mulcl 10880 ax-mulrcl 10881 ax-mulcom 10882 ax-addass 10883 ax-mulass 10884 ax-distr 10885 ax-i2m1 10886 ax-1ne0 10887 ax-1rid 10888 ax-rnegex 10889 ax-rrecex 10890 ax-cnre 10891 ax-pre-lttri 10892 ax-pre-lttrn 10893 ax-pre-ltadd 10894 ax-pre-mulgt0 10895 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6259 df-on 6260 df-lim 6261 df-suc 6262 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-f1 6428 df-fo 6429 df-f1o 6430 df-fv 6431 df-riota 7217 df-ov 7263 df-oprab 7264 df-mpo 7265 df-om 7693 df-2nd 7810 df-tpos 8018 df-frecs 8073 df-wrecs 8104 df-recs 8178 df-rdg 8217 df-er 8461 df-en 8697 df-dom 8698 df-sdom 8699 df-pnf 10958 df-mnf 10959 df-xr 10960 df-ltxr 10961 df-le 10962 df-sub 11153 df-neg 11154 df-nn 11920 df-2 11982 df-3 11983 df-sets 16809 df-slot 16827 df-ndx 16839 df-base 16857 df-ress 16886 df-plusg 16919 df-mulr 16920 df-0g 17096 df-mgm 18270 df-sgrp 18319 df-mnd 18330 df-grp 18524 df-minusg 18525 df-mgp 19665 df-ur 19682 df-ring 19729 df-oppr 19806 df-dvdsr 19827 df-unit 19828 df-invr 19858 df-drng 19937 df-lmod 20069 df-lvec 20309 |
This theorem is referenced by: prjspnvs 40422 |
Copyright terms: Public domain | W3C validator |