![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspvs | Structured version Visualization version GIF version |
Description: A nonzero multiple of a vector is equivalent to the vector. (Contributed by Steven Nguyen, 6-Jun-2023.) |
Ref | Expression |
---|---|
prjsprel.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} |
prjspertr.b | ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) |
prjspertr.s | ⊢ 𝑆 = (Scalar‘𝑉) |
prjspertr.x | ⊢ · = ( ·𝑠 ‘𝑉) |
prjspertr.k | ⊢ 𝐾 = (Base‘𝑆) |
prjspreln0.z | ⊢ 0 = (0g‘𝑆) |
Ref | Expression |
---|---|
prjspvs | ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∼ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . . . 5 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
2 | prjspertr.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑉) | |
3 | prjspertr.x | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑉) | |
4 | prjspertr.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑆) | |
5 | lveclmod 21122 | . . . . . 6 ⊢ (𝑉 ∈ LVec → 𝑉 ∈ LMod) | |
6 | 5 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑉 ∈ LMod) |
7 | eldifi 4140 | . . . . . 6 ⊢ (𝑁 ∈ (𝐾 ∖ { 0 }) → 𝑁 ∈ 𝐾) | |
8 | 7 | 3ad2ant3 1134 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑁 ∈ 𝐾) |
9 | prjspertr.b | . . . . . . . 8 ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) | |
10 | difss 4145 | . . . . . . . 8 ⊢ ((Base‘𝑉) ∖ {(0g‘𝑉)}) ⊆ (Base‘𝑉) | |
11 | 9, 10 | eqsstri 4029 | . . . . . . 7 ⊢ 𝐵 ⊆ (Base‘𝑉) |
12 | 11 | sseli 3990 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘𝑉)) |
13 | 12 | 3ad2ant2 1133 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋 ∈ (Base‘𝑉)) |
14 | 1, 2, 3, 4, 6, 8, 13 | lmodvscld 20893 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ (Base‘𝑉)) |
15 | eldifsni 4794 | . . . . . 6 ⊢ (𝑁 ∈ (𝐾 ∖ { 0 }) → 𝑁 ≠ 0 ) | |
16 | 15 | 3ad2ant3 1134 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑁 ≠ 0 ) |
17 | eldifsni 4794 | . . . . . . 7 ⊢ (𝑋 ∈ ((Base‘𝑉) ∖ {(0g‘𝑉)}) → 𝑋 ≠ (0g‘𝑉)) | |
18 | 17, 9 | eleq2s 2856 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ≠ (0g‘𝑉)) |
19 | 18 | 3ad2ant2 1133 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋 ≠ (0g‘𝑉)) |
20 | prjspreln0.z | . . . . . 6 ⊢ 0 = (0g‘𝑆) | |
21 | eqid 2734 | . . . . . 6 ⊢ (0g‘𝑉) = (0g‘𝑉) | |
22 | simp1 1135 | . . . . . 6 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑉 ∈ LVec) | |
23 | 1, 3, 2, 4, 20, 21, 22, 8, 13 | lvecvsn0 21128 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → ((𝑁 · 𝑋) ≠ (0g‘𝑉) ↔ (𝑁 ≠ 0 ∧ 𝑋 ≠ (0g‘𝑉)))) |
24 | 16, 19, 23 | mpbir2and 713 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ≠ (0g‘𝑉)) |
25 | 14, 24 | eldifsnd 4791 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ ((Base‘𝑉) ∖ {(0g‘𝑉)})) |
26 | 25, 9 | eleqtrrdi 2849 | . 2 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ 𝐵) |
27 | simp2 1136 | . 2 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋 ∈ 𝐵) | |
28 | oveq1 7437 | . . . . 5 ⊢ (𝑁 = 𝑚 → (𝑁 · 𝑋) = (𝑚 · 𝑋)) | |
29 | 28 | eqcoms 2742 | . . . 4 ⊢ (𝑚 = 𝑁 → (𝑁 · 𝑋) = (𝑚 · 𝑋)) |
30 | tbtru 1544 | . . . 4 ⊢ ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ⊤)) | |
31 | 29, 30 | sylib 218 | . . 3 ⊢ (𝑚 = 𝑁 → ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ⊤)) |
32 | trud 1546 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → ⊤) | |
33 | 31, 8, 32 | rspcedvdw 3624 | . 2 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → ∃𝑚 ∈ 𝐾 (𝑁 · 𝑋) = (𝑚 · 𝑋)) |
34 | prjsprel.1 | . . 3 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} | |
35 | 34 | prjsprel 42590 | . 2 ⊢ ((𝑁 · 𝑋) ∼ 𝑋 ↔ (((𝑁 · 𝑋) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 (𝑁 · 𝑋) = (𝑚 · 𝑋))) |
36 | 26, 27, 33, 35 | syl21anbrc 1343 | 1 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∼ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ⊤wtru 1537 ∈ wcel 2105 ≠ wne 2937 ∃wrex 3067 ∖ cdif 3959 {csn 4630 class class class wbr 5147 {copab 5209 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 Scalarcsca 17300 ·𝑠 cvsca 17301 0gc0g 17485 LModclmod 20874 LVecclvec 21118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-tpos 8249 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-0g 17487 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-grp 18966 df-minusg 18967 df-cmn 19814 df-abl 19815 df-mgp 20152 df-rng 20170 df-ur 20199 df-ring 20252 df-oppr 20350 df-dvdsr 20373 df-unit 20374 df-invr 20404 df-drng 20747 df-lmod 20876 df-lvec 21119 |
This theorem is referenced by: prjspnvs 42606 |
Copyright terms: Public domain | W3C validator |