Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspvs Structured version   Visualization version   GIF version

Theorem prjspvs 39309
Description: A nonzero multiple of a vector is equivalent to the vector. (Contributed by Steven Nguyen, 6-Jun-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
prjspreln0.z 0 = (0g𝑆)
Assertion
Ref Expression
prjspvs ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) 𝑋)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙   𝑁,𝑙,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   𝑉(𝑥,𝑦,𝑙)   0 (𝑥,𝑦,𝑙)

Proof of Theorem prjspvs
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 lveclmod 19878 . . . . . 6 (𝑉 ∈ LVec → 𝑉 ∈ LMod)
213ad2ant1 1129 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑉 ∈ LMod)
3 eldifi 4103 . . . . . 6 (𝑁 ∈ (𝐾 ∖ { 0 }) → 𝑁𝐾)
433ad2ant3 1131 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑁𝐾)
5 prjspertr.b . . . . . . . 8 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
6 difss 4108 . . . . . . . 8 ((Base‘𝑉) ∖ {(0g𝑉)}) ⊆ (Base‘𝑉)
75, 6eqsstri 4001 . . . . . . 7 𝐵 ⊆ (Base‘𝑉)
87sseli 3963 . . . . . 6 (𝑋𝐵𝑋 ∈ (Base‘𝑉))
983ad2ant2 1130 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋 ∈ (Base‘𝑉))
10 eqid 2821 . . . . . 6 (Base‘𝑉) = (Base‘𝑉)
11 prjspertr.s . . . . . 6 𝑆 = (Scalar‘𝑉)
12 prjspertr.x . . . . . 6 · = ( ·𝑠𝑉)
13 prjspertr.k . . . . . 6 𝐾 = (Base‘𝑆)
1410, 11, 12, 13lmodvscl 19651 . . . . 5 ((𝑉 ∈ LMod ∧ 𝑁𝐾𝑋 ∈ (Base‘𝑉)) → (𝑁 · 𝑋) ∈ (Base‘𝑉))
152, 4, 9, 14syl3anc 1367 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ (Base‘𝑉))
16 eldifsni 4722 . . . . . . 7 (𝑁 ∈ (𝐾 ∖ { 0 }) → 𝑁0 )
17163ad2ant3 1131 . . . . . 6 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑁0 )
18 eldifsni 4722 . . . . . . . 8 (𝑋 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑋 ≠ (0g𝑉))
1918, 5eleq2s 2931 . . . . . . 7 (𝑋𝐵𝑋 ≠ (0g𝑉))
20193ad2ant2 1130 . . . . . 6 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋 ≠ (0g𝑉))
21 prjspreln0.z . . . . . . 7 0 = (0g𝑆)
22 eqid 2821 . . . . . . 7 (0g𝑉) = (0g𝑉)
23 simp1 1132 . . . . . . 7 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑉 ∈ LVec)
2410, 12, 11, 13, 21, 22, 23, 4, 9lvecvsn0 19881 . . . . . 6 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → ((𝑁 · 𝑋) ≠ (0g𝑉) ↔ (𝑁0𝑋 ≠ (0g𝑉))))
2517, 20, 24mpbir2and 711 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ≠ (0g𝑉))
26 nelsn 4605 . . . . 5 ((𝑁 · 𝑋) ≠ (0g𝑉) → ¬ (𝑁 · 𝑋) ∈ {(0g𝑉)})
2725, 26syl 17 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → ¬ (𝑁 · 𝑋) ∈ {(0g𝑉)})
2815, 27eldifd 3947 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ ((Base‘𝑉) ∖ {(0g𝑉)}))
2928, 5eleqtrrdi 2924 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ 𝐵)
30 simp2 1133 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋𝐵)
31 oveq1 7163 . . . . . 6 (𝑁 = 𝑚 → (𝑁 · 𝑋) = (𝑚 · 𝑋))
3231eqcoms 2829 . . . . 5 (𝑚 = 𝑁 → (𝑁 · 𝑋) = (𝑚 · 𝑋))
33 tbtru 1545 . . . . 5 ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ⊤))
3432, 33sylib 220 . . . 4 (𝑚 = 𝑁 → ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ⊤))
3534adantl 484 . . 3 (((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) ∧ 𝑚 = 𝑁) → ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ⊤))
36 trud 1547 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → ⊤)
374, 35, 36rspcedvd 3626 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → ∃𝑚𝐾 (𝑁 · 𝑋) = (𝑚 · 𝑋))
38 prjsprel.1 . . 3 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
3938prjsprel 39303 . 2 ((𝑁 · 𝑋) 𝑋 ↔ (((𝑁 · 𝑋) ∈ 𝐵𝑋𝐵) ∧ ∃𝑚𝐾 (𝑁 · 𝑋) = (𝑚 · 𝑋)))
4029, 30, 37, 39syl21anbrc 1340 1 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wtru 1538  wcel 2114  wne 3016  wrex 3139  cdif 3933  {csn 4567   class class class wbr 5066  {copab 5128  cfv 6355  (class class class)co 7156  Basecbs 16483  Scalarcsca 16568   ·𝑠 cvsca 16569  0gc0g 16713  LModclmod 19634  LVecclvec 19874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-mgp 19240  df-ur 19252  df-ring 19299  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-drng 19504  df-lmod 19636  df-lvec 19875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator