![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspvs | Structured version Visualization version GIF version |
Description: A nonzero multiple of a vector is equivalent to the vector. (Contributed by Steven Nguyen, 6-Jun-2023.) |
Ref | Expression |
---|---|
prjsprel.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} |
prjspertr.b | ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) |
prjspertr.s | ⊢ 𝑆 = (Scalar‘𝑉) |
prjspertr.x | ⊢ · = ( ·𝑠 ‘𝑉) |
prjspertr.k | ⊢ 𝐾 = (Base‘𝑆) |
prjspreln0.z | ⊢ 0 = (0g‘𝑆) |
Ref | Expression |
---|---|
prjspvs | ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∼ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . . . 5 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
2 | prjspertr.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑉) | |
3 | prjspertr.x | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑉) | |
4 | prjspertr.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑆) | |
5 | lveclmod 21084 | . . . . . 6 ⊢ (𝑉 ∈ LVec → 𝑉 ∈ LMod) | |
6 | 5 | 3ad2ant1 1130 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑉 ∈ LMod) |
7 | eldifi 4126 | . . . . . 6 ⊢ (𝑁 ∈ (𝐾 ∖ { 0 }) → 𝑁 ∈ 𝐾) | |
8 | 7 | 3ad2ant3 1132 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑁 ∈ 𝐾) |
9 | prjspertr.b | . . . . . . . 8 ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) | |
10 | difss 4131 | . . . . . . . 8 ⊢ ((Base‘𝑉) ∖ {(0g‘𝑉)}) ⊆ (Base‘𝑉) | |
11 | 9, 10 | eqsstri 4014 | . . . . . . 7 ⊢ 𝐵 ⊆ (Base‘𝑉) |
12 | 11 | sseli 3975 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘𝑉)) |
13 | 12 | 3ad2ant2 1131 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋 ∈ (Base‘𝑉)) |
14 | 1, 2, 3, 4, 6, 8, 13 | lmodvscld 20855 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ (Base‘𝑉)) |
15 | eldifsni 4799 | . . . . . . 7 ⊢ (𝑁 ∈ (𝐾 ∖ { 0 }) → 𝑁 ≠ 0 ) | |
16 | 15 | 3ad2ant3 1132 | . . . . . 6 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑁 ≠ 0 ) |
17 | eldifsni 4799 | . . . . . . . 8 ⊢ (𝑋 ∈ ((Base‘𝑉) ∖ {(0g‘𝑉)}) → 𝑋 ≠ (0g‘𝑉)) | |
18 | 17, 9 | eleq2s 2844 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ≠ (0g‘𝑉)) |
19 | 18 | 3ad2ant2 1131 | . . . . . 6 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋 ≠ (0g‘𝑉)) |
20 | prjspreln0.z | . . . . . . 7 ⊢ 0 = (0g‘𝑆) | |
21 | eqid 2726 | . . . . . . 7 ⊢ (0g‘𝑉) = (0g‘𝑉) | |
22 | simp1 1133 | . . . . . . 7 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑉 ∈ LVec) | |
23 | 1, 3, 2, 4, 20, 21, 22, 8, 13 | lvecvsn0 21090 | . . . . . 6 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → ((𝑁 · 𝑋) ≠ (0g‘𝑉) ↔ (𝑁 ≠ 0 ∧ 𝑋 ≠ (0g‘𝑉)))) |
24 | 16, 19, 23 | mpbir2and 711 | . . . . 5 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ≠ (0g‘𝑉)) |
25 | nelsn 4673 | . . . . 5 ⊢ ((𝑁 · 𝑋) ≠ (0g‘𝑉) → ¬ (𝑁 · 𝑋) ∈ {(0g‘𝑉)}) | |
26 | 24, 25 | syl 17 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → ¬ (𝑁 · 𝑋) ∈ {(0g‘𝑉)}) |
27 | 14, 26 | eldifd 3958 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ ((Base‘𝑉) ∖ {(0g‘𝑉)})) |
28 | 27, 9 | eleqtrrdi 2837 | . 2 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ 𝐵) |
29 | simp2 1134 | . 2 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋 ∈ 𝐵) | |
30 | oveq1 7431 | . . . . . 6 ⊢ (𝑁 = 𝑚 → (𝑁 · 𝑋) = (𝑚 · 𝑋)) | |
31 | 30 | eqcoms 2734 | . . . . 5 ⊢ (𝑚 = 𝑁 → (𝑁 · 𝑋) = (𝑚 · 𝑋)) |
32 | tbtru 1542 | . . . . 5 ⊢ ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ⊤)) | |
33 | 31, 32 | sylib 217 | . . . 4 ⊢ (𝑚 = 𝑁 → ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ⊤)) |
34 | 33 | adantl 480 | . . 3 ⊢ (((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) ∧ 𝑚 = 𝑁) → ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ⊤)) |
35 | trud 1544 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → ⊤) | |
36 | 8, 34, 35 | rspcedvd 3610 | . 2 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → ∃𝑚 ∈ 𝐾 (𝑁 · 𝑋) = (𝑚 · 𝑋)) |
37 | prjsprel.1 | . . 3 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} | |
38 | 37 | prjsprel 42258 | . 2 ⊢ ((𝑁 · 𝑋) ∼ 𝑋 ↔ (((𝑁 · 𝑋) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 (𝑁 · 𝑋) = (𝑚 · 𝑋))) |
39 | 28, 29, 36, 38 | syl21anbrc 1341 | 1 ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∼ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ⊤wtru 1535 ∈ wcel 2099 ≠ wne 2930 ∃wrex 3060 ∖ cdif 3944 {csn 4633 class class class wbr 5153 {copab 5215 ‘cfv 6554 (class class class)co 7424 Basecbs 17213 Scalarcsca 17269 ·𝑠 cvsca 17270 0gc0g 17454 LModclmod 20836 LVecclvec 21080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-2nd 8004 df-tpos 8241 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-0g 17456 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-grp 18931 df-minusg 18932 df-cmn 19780 df-abl 19781 df-mgp 20118 df-rng 20136 df-ur 20165 df-ring 20218 df-oppr 20316 df-dvdsr 20339 df-unit 20340 df-invr 20370 df-drng 20709 df-lmod 20838 df-lvec 21081 |
This theorem is referenced by: prjspnvs 42274 |
Copyright terms: Public domain | W3C validator |