![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mhphf4 | Structured version Visualization version GIF version |
Description: A homogeneous polynomial defines a homogeneous function; this is mhphf3 42554 with evalSub collapsed to eval. (Contributed by SN, 23-Nov-2024.) |
Ref | Expression |
---|---|
mhphf4.q | ⊢ 𝑄 = (𝐼 eval 𝑆) |
mhphf4.h | ⊢ 𝐻 = (𝐼 mHomP 𝑆) |
mhphf4.k | ⊢ 𝐾 = (Base‘𝑆) |
mhphf4.f | ⊢ 𝐹 = (𝑆 freeLMod 𝐼) |
mhphf4.m | ⊢ 𝑀 = (Base‘𝐹) |
mhphf4.b | ⊢ ∙ = ( ·𝑠 ‘𝐹) |
mhphf4.x | ⊢ · = (.r‘𝑆) |
mhphf4.e | ⊢ ↑ = (.g‘(mulGrp‘𝑆)) |
mhphf4.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
mhphf4.l | ⊢ (𝜑 → 𝐿 ∈ 𝐾) |
mhphf4.p | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
mhphf4.a | ⊢ (𝜑 → 𝐴 ∈ 𝑀) |
Ref | Expression |
---|---|
mhphf4 | ⊢ (𝜑 → ((𝑄‘𝑋)‘(𝐿 ∙ 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhphf4.q | . . 3 ⊢ 𝑄 = (𝐼 eval 𝑆) | |
2 | mhphf4.k | . . 3 ⊢ 𝐾 = (Base‘𝑆) | |
3 | 1, 2 | evlval 22142 | . 2 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝐾) |
4 | eqid 2740 | . 2 ⊢ (𝐼 mHomP (𝑆 ↾s 𝐾)) = (𝐼 mHomP (𝑆 ↾s 𝐾)) | |
5 | eqid 2740 | . 2 ⊢ (𝑆 ↾s 𝐾) = (𝑆 ↾s 𝐾) | |
6 | mhphf4.f | . 2 ⊢ 𝐹 = (𝑆 freeLMod 𝐼) | |
7 | mhphf4.m | . 2 ⊢ 𝑀 = (Base‘𝐹) | |
8 | mhphf4.b | . 2 ⊢ ∙ = ( ·𝑠 ‘𝐹) | |
9 | mhphf4.x | . 2 ⊢ · = (.r‘𝑆) | |
10 | mhphf4.e | . 2 ⊢ ↑ = (.g‘(mulGrp‘𝑆)) | |
11 | mhphf4.s | . 2 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
12 | 11 | crngringd 20273 | . . 3 ⊢ (𝜑 → 𝑆 ∈ Ring) |
13 | 2 | subrgid 20601 | . . 3 ⊢ (𝑆 ∈ Ring → 𝐾 ∈ (SubRing‘𝑆)) |
14 | 12, 13 | syl 17 | . 2 ⊢ (𝜑 → 𝐾 ∈ (SubRing‘𝑆)) |
15 | mhphf4.l | . 2 ⊢ (𝜑 → 𝐿 ∈ 𝐾) | |
16 | mhphf4.p | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
17 | mhphf4.h | . . . . 5 ⊢ 𝐻 = (𝐼 mHomP 𝑆) | |
18 | 2 | ressid 17303 | . . . . . . . 8 ⊢ (𝑆 ∈ CRing → (𝑆 ↾s 𝐾) = 𝑆) |
19 | 11, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑆 ↾s 𝐾) = 𝑆) |
20 | 19 | eqcomd 2746 | . . . . . 6 ⊢ (𝜑 → 𝑆 = (𝑆 ↾s 𝐾)) |
21 | 20 | oveq2d 7464 | . . . . 5 ⊢ (𝜑 → (𝐼 mHomP 𝑆) = (𝐼 mHomP (𝑆 ↾s 𝐾))) |
22 | 17, 21 | eqtrid 2792 | . . . 4 ⊢ (𝜑 → 𝐻 = (𝐼 mHomP (𝑆 ↾s 𝐾))) |
23 | 22 | fveq1d 6922 | . . 3 ⊢ (𝜑 → (𝐻‘𝑁) = ((𝐼 mHomP (𝑆 ↾s 𝐾))‘𝑁)) |
24 | 16, 23 | eleqtrd 2846 | . 2 ⊢ (𝜑 → 𝑋 ∈ ((𝐼 mHomP (𝑆 ↾s 𝐾))‘𝑁)) |
25 | mhphf4.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑀) | |
26 | 3, 4, 5, 2, 6, 7, 8, 9, 10, 11, 14, 15, 24, 25 | mhphf3 42554 | 1 ⊢ (𝜑 → ((𝑄‘𝑋)‘(𝐿 ∙ 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 ↾s cress 17287 .rcmulr 17312 ·𝑠 cvsca 17315 .gcmg 19107 mulGrpcmgp 20161 Ringcrg 20260 CRingccrg 20261 SubRingcsubrg 20595 freeLMod cfrlm 21789 eval cevl 22120 mHomP cmhp 22156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-0g 17501 df-gsum 17502 df-prds 17507 df-pws 17509 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-ghm 19253 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-srg 20214 df-ring 20262 df-cring 20263 df-rhm 20498 df-subrng 20572 df-subrg 20597 df-lmod 20882 df-lss 20953 df-lsp 20993 df-sra 21195 df-rgmod 21196 df-cnfld 21388 df-dsmm 21775 df-frlm 21790 df-assa 21896 df-asp 21897 df-ascl 21898 df-psr 21952 df-mvr 21953 df-mpl 21954 df-evls 22121 df-evl 22122 df-mhp 22163 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |