![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mhphf4 | Structured version Visualization version GIF version |
Description: A homogeneous polynomial defines a homogeneous function; this is mhphf3 42071 with evalSub collapsed to eval. (Contributed by SN, 23-Nov-2024.) |
Ref | Expression |
---|---|
mhphf4.q | ⊢ 𝑄 = (𝐼 eval 𝑆) |
mhphf4.h | ⊢ 𝐻 = (𝐼 mHomP 𝑆) |
mhphf4.k | ⊢ 𝐾 = (Base‘𝑆) |
mhphf4.f | ⊢ 𝐹 = (𝑆 freeLMod 𝐼) |
mhphf4.m | ⊢ 𝑀 = (Base‘𝐹) |
mhphf4.b | ⊢ ∙ = ( ·𝑠 ‘𝐹) |
mhphf4.x | ⊢ · = (.r‘𝑆) |
mhphf4.e | ⊢ ↑ = (.g‘(mulGrp‘𝑆)) |
mhphf4.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mhphf4.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
mhphf4.l | ⊢ (𝜑 → 𝐿 ∈ 𝐾) |
mhphf4.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
mhphf4.p | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
mhphf4.a | ⊢ (𝜑 → 𝐴 ∈ 𝑀) |
Ref | Expression |
---|---|
mhphf4 | ⊢ (𝜑 → ((𝑄‘𝑋)‘(𝐿 ∙ 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhphf4.q | . . 3 ⊢ 𝑄 = (𝐼 eval 𝑆) | |
2 | mhphf4.k | . . 3 ⊢ 𝐾 = (Base‘𝑆) | |
3 | 1, 2 | evlval 22110 | . 2 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝐾) |
4 | eqid 2726 | . 2 ⊢ (𝐼 mHomP (𝑆 ↾s 𝐾)) = (𝐼 mHomP (𝑆 ↾s 𝐾)) | |
5 | eqid 2726 | . 2 ⊢ (𝑆 ↾s 𝐾) = (𝑆 ↾s 𝐾) | |
6 | mhphf4.f | . 2 ⊢ 𝐹 = (𝑆 freeLMod 𝐼) | |
7 | mhphf4.m | . 2 ⊢ 𝑀 = (Base‘𝐹) | |
8 | mhphf4.b | . 2 ⊢ ∙ = ( ·𝑠 ‘𝐹) | |
9 | mhphf4.x | . 2 ⊢ · = (.r‘𝑆) | |
10 | mhphf4.e | . 2 ⊢ ↑ = (.g‘(mulGrp‘𝑆)) | |
11 | mhphf4.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
12 | mhphf4.s | . 2 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
13 | 12 | crngringd 20229 | . . 3 ⊢ (𝜑 → 𝑆 ∈ Ring) |
14 | 2 | subrgid 20557 | . . 3 ⊢ (𝑆 ∈ Ring → 𝐾 ∈ (SubRing‘𝑆)) |
15 | 13, 14 | syl 17 | . 2 ⊢ (𝜑 → 𝐾 ∈ (SubRing‘𝑆)) |
16 | mhphf4.l | . 2 ⊢ (𝜑 → 𝐿 ∈ 𝐾) | |
17 | mhphf4.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
18 | mhphf4.p | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
19 | mhphf4.h | . . . . 5 ⊢ 𝐻 = (𝐼 mHomP 𝑆) | |
20 | 2 | ressid 17258 | . . . . . . . 8 ⊢ (𝑆 ∈ CRing → (𝑆 ↾s 𝐾) = 𝑆) |
21 | 12, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑆 ↾s 𝐾) = 𝑆) |
22 | 21 | eqcomd 2732 | . . . . . 6 ⊢ (𝜑 → 𝑆 = (𝑆 ↾s 𝐾)) |
23 | 22 | oveq2d 7440 | . . . . 5 ⊢ (𝜑 → (𝐼 mHomP 𝑆) = (𝐼 mHomP (𝑆 ↾s 𝐾))) |
24 | 19, 23 | eqtrid 2778 | . . . 4 ⊢ (𝜑 → 𝐻 = (𝐼 mHomP (𝑆 ↾s 𝐾))) |
25 | 24 | fveq1d 6903 | . . 3 ⊢ (𝜑 → (𝐻‘𝑁) = ((𝐼 mHomP (𝑆 ↾s 𝐾))‘𝑁)) |
26 | 18, 25 | eleqtrd 2828 | . 2 ⊢ (𝜑 → 𝑋 ∈ ((𝐼 mHomP (𝑆 ↾s 𝐾))‘𝑁)) |
27 | mhphf4.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑀) | |
28 | 3, 4, 5, 2, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 26, 27 | mhphf3 42071 | 1 ⊢ (𝜑 → ((𝑄‘𝑋)‘(𝐿 ∙ 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ‘cfv 6554 (class class class)co 7424 ℕ0cn0 12524 Basecbs 17213 ↾s cress 17242 .rcmulr 17267 ·𝑠 cvsca 17270 .gcmg 19061 mulGrpcmgp 20117 Ringcrg 20216 CRingccrg 20217 SubRingcsubrg 20551 freeLMod cfrlm 21744 eval cevl 22086 mHomP cmhp 22124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-addf 11237 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-iin 5004 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7690 df-ofr 7691 df-om 7877 df-1st 8003 df-2nd 8004 df-supp 8175 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-er 8734 df-map 8857 df-pm 8858 df-ixp 8927 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-fsupp 9406 df-sup 9485 df-oi 9553 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-fz 13539 df-fzo 13682 df-seq 14022 df-hash 14348 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-starv 17281 df-sca 17282 df-vsca 17283 df-ip 17284 df-tset 17285 df-ple 17286 df-ds 17288 df-unif 17289 df-hom 17290 df-cco 17291 df-0g 17456 df-gsum 17457 df-prds 17462 df-pws 17464 df-mre 17599 df-mrc 17600 df-acs 17602 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-mhm 18773 df-submnd 18774 df-grp 18931 df-minusg 18932 df-sbg 18933 df-mulg 19062 df-subg 19117 df-ghm 19207 df-cntz 19311 df-cmn 19780 df-abl 19781 df-mgp 20118 df-rng 20136 df-ur 20165 df-srg 20170 df-ring 20218 df-cring 20219 df-rhm 20454 df-subrng 20528 df-subrg 20553 df-lmod 20838 df-lss 20909 df-lsp 20949 df-sra 21151 df-rgmod 21152 df-cnfld 21344 df-dsmm 21730 df-frlm 21745 df-assa 21851 df-asp 21852 df-ascl 21853 df-psr 21906 df-mvr 21907 df-mpl 21908 df-evls 22087 df-evl 22088 df-mhp 22131 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |