| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-proset | Structured version Visualization version GIF version | ||
| Description: Define the class of
preordered sets, or prosets. A proset is a set
equipped with a preorder, that is, a transitive and reflexive relation.
Preorders are a natural generalization of partial orders which need not be antisymmetric: there may be pairs of elements such that each is "less than or equal to" the other, so that both elements have the same order-theoretic properties (in some sense, there is a "tie" among them). If a preorder is required to be antisymmetric, that is, there is no such "tie", then one obtains a partial order. If a preorder is required to be symmetric, that is, all comparable elements are tied, then one obtains an equivalence relation. Every preorder naturally factors into these two notions: the "tie" relation on a proset is an equivalence relation, and the quotient under that equivalence relation is a partial order. (Contributed by FL, 17-Nov-2014.) (Revised by Stefan O'Rear, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| df-proset | ⊢ Proset = {𝑓 ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cproset 18338 | . 2 class Proset | |
| 2 | vx | . . . . . . . . . . 11 setvar 𝑥 | |
| 3 | 2 | cv 1539 | . . . . . . . . . 10 class 𝑥 |
| 4 | vr | . . . . . . . . . . 11 setvar 𝑟 | |
| 5 | 4 | cv 1539 | . . . . . . . . . 10 class 𝑟 |
| 6 | 3, 3, 5 | wbr 5143 | . . . . . . . . 9 wff 𝑥𝑟𝑥 |
| 7 | vy | . . . . . . . . . . . . 13 setvar 𝑦 | |
| 8 | 7 | cv 1539 | . . . . . . . . . . . 12 class 𝑦 |
| 9 | 3, 8, 5 | wbr 5143 | . . . . . . . . . . 11 wff 𝑥𝑟𝑦 |
| 10 | vz | . . . . . . . . . . . . 13 setvar 𝑧 | |
| 11 | 10 | cv 1539 | . . . . . . . . . . . 12 class 𝑧 |
| 12 | 8, 11, 5 | wbr 5143 | . . . . . . . . . . 11 wff 𝑦𝑟𝑧 |
| 13 | 9, 12 | wa 395 | . . . . . . . . . 10 wff (𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) |
| 14 | 3, 11, 5 | wbr 5143 | . . . . . . . . . 10 wff 𝑥𝑟𝑧 |
| 15 | 13, 14 | wi 4 | . . . . . . . . 9 wff ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧) |
| 16 | 6, 15 | wa 395 | . . . . . . . 8 wff (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) |
| 17 | vb | . . . . . . . . 9 setvar 𝑏 | |
| 18 | 17 | cv 1539 | . . . . . . . 8 class 𝑏 |
| 19 | 16, 10, 18 | wral 3061 | . . . . . . 7 wff ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) |
| 20 | 19, 7, 18 | wral 3061 | . . . . . 6 wff ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) |
| 21 | 20, 2, 18 | wral 3061 | . . . . 5 wff ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) |
| 22 | vf | . . . . . . 7 setvar 𝑓 | |
| 23 | 22 | cv 1539 | . . . . . 6 class 𝑓 |
| 24 | cple 17304 | . . . . . 6 class le | |
| 25 | 23, 24 | cfv 6561 | . . . . 5 class (le‘𝑓) |
| 26 | 21, 4, 25 | wsbc 3788 | . . . 4 wff [(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) |
| 27 | cbs 17247 | . . . . 5 class Base | |
| 28 | 23, 27 | cfv 6561 | . . . 4 class (Base‘𝑓) |
| 29 | 26, 17, 28 | wsbc 3788 | . . 3 wff [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) |
| 30 | 29, 22 | cab 2714 | . 2 class {𝑓 ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))} |
| 31 | 1, 30 | wceq 1540 | 1 wff Proset = {𝑓 ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))} |
| Colors of variables: wff setvar class |
| This definition is referenced by: isprs 18342 |
| Copyright terms: Public domain | W3C validator |