MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-drs Structured version   Visualization version   GIF version

Definition df-drs 17137
Description: Define the class of directed sets. A directed set is a nonempty preordered set where every pair of elements have some upper bound. Note that it is not required that there exist a least upper bound.

There is no consensus in the literature over whether directed sets are allowed to be empty. It is slightly more convenient for us if they are not. (Contributed by Stefan O'Rear, 1-Feb-2015.)

Assertion
Ref Expression
df-drs Dirset = {𝑓 ∈ Preset ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧))}
Distinct variable group:   𝑓,𝑏,𝑟,𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-drs
StepHypRef Expression
1 cdrs 17135 . 2 class Dirset
2 vb . . . . . . . 8 setvar 𝑏
32cv 1630 . . . . . . 7 class 𝑏
4 c0 4063 . . . . . . 7 class
53, 4wne 2943 . . . . . 6 wff 𝑏 ≠ ∅
6 vx . . . . . . . . . . . 12 setvar 𝑥
76cv 1630 . . . . . . . . . . 11 class 𝑥
8 vz . . . . . . . . . . . 12 setvar 𝑧
98cv 1630 . . . . . . . . . . 11 class 𝑧
10 vr . . . . . . . . . . . 12 setvar 𝑟
1110cv 1630 . . . . . . . . . . 11 class 𝑟
127, 9, 11wbr 4786 . . . . . . . . . 10 wff 𝑥𝑟𝑧
13 vy . . . . . . . . . . . 12 setvar 𝑦
1413cv 1630 . . . . . . . . . . 11 class 𝑦
1514, 9, 11wbr 4786 . . . . . . . . . 10 wff 𝑦𝑟𝑧
1612, 15wa 382 . . . . . . . . 9 wff (𝑥𝑟𝑧𝑦𝑟𝑧)
1716, 8, 3wrex 3062 . . . . . . . 8 wff 𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧)
1817, 13, 3wral 3061 . . . . . . 7 wff 𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧)
1918, 6, 3wral 3061 . . . . . 6 wff 𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧)
205, 19wa 382 . . . . 5 wff (𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧))
21 vf . . . . . . 7 setvar 𝑓
2221cv 1630 . . . . . 6 class 𝑓
23 cple 16156 . . . . . 6 class le
2422, 23cfv 6031 . . . . 5 class (le‘𝑓)
2520, 10, 24wsbc 3587 . . . 4 wff [(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧))
26 cbs 16064 . . . . 5 class Base
2722, 26cfv 6031 . . . 4 class (Base‘𝑓)
2825, 2, 27wsbc 3587 . . 3 wff [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧))
29 cpreset 17134 . . 3 class Preset
3028, 21, 29crab 3065 . 2 class {𝑓 ∈ Preset ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧))}
311, 30wceq 1631 1 wff Dirset = {𝑓 ∈ Preset ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧))}
Colors of variables: wff setvar class
This definition is referenced by:  isdrs  17142
  Copyright terms: Public domain W3C validator