MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprs Structured version   Visualization version   GIF version

Theorem isprs 17532
Description: Property of being a preordered set. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypotheses
Ref Expression
isprs.b 𝐵 = (Base‘𝐾)
isprs.l = (le‘𝐾)
Assertion
Ref Expression
isprs (𝐾 ∈ Proset ↔ (𝐾 ∈ V ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
Distinct variable groups:   𝑥,𝐾,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥, ,𝑦,𝑧

Proof of Theorem isprs
Dummy variables 𝑓 𝑏 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6645 . . . 4 (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾))
2 fveq2 6645 . . . . 5 (𝑓 = 𝐾 → (le‘𝑓) = (le‘𝐾))
32sbceq1d 3725 . . . 4 (𝑓 = 𝐾 → ([(le‘𝑓) / 𝑟]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ [(le‘𝐾) / 𝑟]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))))
41, 3sbceqbid 3727 . . 3 (𝑓 = 𝐾 → ([(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ [(Base‘𝐾) / 𝑏][(le‘𝐾) / 𝑟]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))))
5 fvex 6658 . . . 4 (Base‘𝐾) ∈ V
6 fvex 6658 . . . 4 (le‘𝐾) ∈ V
7 isprs.b . . . . . . 7 𝐵 = (Base‘𝐾)
8 eqtr3 2820 . . . . . . 7 ((𝑏 = (Base‘𝐾) ∧ 𝐵 = (Base‘𝐾)) → 𝑏 = 𝐵)
97, 8mpan2 690 . . . . . 6 (𝑏 = (Base‘𝐾) → 𝑏 = 𝐵)
10 raleq 3358 . . . . . . . 8 (𝑏 = 𝐵 → (∀𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑧𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))))
1110raleqbi1dv 3356 . . . . . . 7 (𝑏 = 𝐵 → (∀𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑦𝐵𝑧𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))))
1211raleqbi1dv 3356 . . . . . 6 (𝑏 = 𝐵 → (∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))))
139, 12syl 17 . . . . 5 (𝑏 = (Base‘𝐾) → (∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))))
14 isprs.l . . . . . . 7 = (le‘𝐾)
15 eqtr3 2820 . . . . . . 7 ((𝑟 = (le‘𝐾) ∧ = (le‘𝐾)) → 𝑟 = )
1614, 15mpan2 690 . . . . . 6 (𝑟 = (le‘𝐾) → 𝑟 = )
17 breq 5032 . . . . . . . . 9 (𝑟 = → (𝑥𝑟𝑥𝑥 𝑥))
18 breq 5032 . . . . . . . . . . 11 (𝑟 = → (𝑥𝑟𝑦𝑥 𝑦))
19 breq 5032 . . . . . . . . . . 11 (𝑟 = → (𝑦𝑟𝑧𝑦 𝑧))
2018, 19anbi12d 633 . . . . . . . . . 10 (𝑟 = → ((𝑥𝑟𝑦𝑦𝑟𝑧) ↔ (𝑥 𝑦𝑦 𝑧)))
21 breq 5032 . . . . . . . . . 10 (𝑟 = → (𝑥𝑟𝑧𝑥 𝑧))
2220, 21imbi12d 348 . . . . . . . . 9 (𝑟 = → (((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)))
2317, 22anbi12d 633 . . . . . . . 8 (𝑟 = → ((𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
2423ralbidv 3162 . . . . . . 7 (𝑟 = → (∀𝑧𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
25242ralbidv 3164 . . . . . 6 (𝑟 = → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
2616, 25syl 17 . . . . 5 (𝑟 = (le‘𝐾) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
2713, 26sylan9bb 513 . . . 4 ((𝑏 = (Base‘𝐾) ∧ 𝑟 = (le‘𝐾)) → (∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
285, 6, 27sbc2ie 3796 . . 3 ([(Base‘𝐾) / 𝑏][(le‘𝐾) / 𝑟]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)))
294, 28syl6bb 290 . 2 (𝑓 = 𝐾 → ([(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
30 df-proset 17530 . 2 Proset = {𝑓[(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))}
3129, 30elab4g 3619 1 (𝐾 ∈ Proset ↔ (𝐾 ∈ V ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  [wsbc 3720   class class class wbr 5030  cfv 6324  Basecbs 16475  lecple 16564   Proset cproset 17528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-nul 5174
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-iota 6283  df-fv 6332  df-proset 17530
This theorem is referenced by:  prslem  17533  ispos2  17550  ressprs  30668  oduprs  30669
  Copyright terms: Public domain W3C validator