| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6876 |
. . . 4
⊢ (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾)) |
| 2 | | fveq2 6876 |
. . . . 5
⊢ (𝑓 = 𝐾 → (le‘𝑓) = (le‘𝐾)) |
| 3 | 2 | sbceq1d 3770 |
. . . 4
⊢ (𝑓 = 𝐾 → ([(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ [(le‘𝐾) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)))) |
| 4 | 1, 3 | sbceqbid 3772 |
. . 3
⊢ (𝑓 = 𝐾 → ([(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ [(Base‘𝐾) / 𝑏][(le‘𝐾) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)))) |
| 5 | | fvex 6889 |
. . . 4
⊢
(Base‘𝐾)
∈ V |
| 6 | | fvex 6889 |
. . . 4
⊢
(le‘𝐾) ∈
V |
| 7 | | isprs.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐾) |
| 8 | | eqtr3 2757 |
. . . . . . 7
⊢ ((𝑏 = (Base‘𝐾) ∧ 𝐵 = (Base‘𝐾)) → 𝑏 = 𝐵) |
| 9 | 7, 8 | mpan2 691 |
. . . . . 6
⊢ (𝑏 = (Base‘𝐾) → 𝑏 = 𝐵) |
| 10 | | raleq 3302 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → (∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑧 ∈ 𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)))) |
| 11 | 10 | raleqbi1dv 3317 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)))) |
| 12 | 11 | raleqbi1dv 3317 |
. . . . . 6
⊢ (𝑏 = 𝐵 → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)))) |
| 13 | 9, 12 | syl 17 |
. . . . 5
⊢ (𝑏 = (Base‘𝐾) → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)))) |
| 14 | | isprs.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
| 15 | | eqtr3 2757 |
. . . . . . 7
⊢ ((𝑟 = (le‘𝐾) ∧ ≤ = (le‘𝐾)) → 𝑟 = ≤ ) |
| 16 | 14, 15 | mpan2 691 |
. . . . . 6
⊢ (𝑟 = (le‘𝐾) → 𝑟 = ≤ ) |
| 17 | | breq 5121 |
. . . . . . . . 9
⊢ (𝑟 = ≤ → (𝑥𝑟𝑥 ↔ 𝑥 ≤ 𝑥)) |
| 18 | | breq 5121 |
. . . . . . . . . . 11
⊢ (𝑟 = ≤ → (𝑥𝑟𝑦 ↔ 𝑥 ≤ 𝑦)) |
| 19 | | breq 5121 |
. . . . . . . . . . 11
⊢ (𝑟 = ≤ → (𝑦𝑟𝑧 ↔ 𝑦 ≤ 𝑧)) |
| 20 | 18, 19 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑟 = ≤ → ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧))) |
| 21 | | breq 5121 |
. . . . . . . . . 10
⊢ (𝑟 = ≤ → (𝑥𝑟𝑧 ↔ 𝑥 ≤ 𝑧)) |
| 22 | 20, 21 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑟 = ≤ → (((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧) ↔ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
| 23 | 17, 22 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑟 = ≤ → ((𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
| 24 | 23 | ralbidv 3163 |
. . . . . . 7
⊢ (𝑟 = ≤ → (∀𝑧 ∈ 𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
| 25 | 24 | 2ralbidv 3205 |
. . . . . 6
⊢ (𝑟 = ≤ → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
| 26 | 16, 25 | syl 17 |
. . . . 5
⊢ (𝑟 = (le‘𝐾) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
| 27 | 13, 26 | sylan9bb 509 |
. . . 4
⊢ ((𝑏 = (Base‘𝐾) ∧ 𝑟 = (le‘𝐾)) → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
| 28 | 5, 6, 27 | sbc2ie 3841 |
. . 3
⊢
([(Base‘𝐾) / 𝑏][(le‘𝐾) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
| 29 | 4, 28 | bitrdi 287 |
. 2
⊢ (𝑓 = 𝐾 → ([(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
| 30 | | df-proset 18306 |
. 2
⊢ Proset =
{𝑓 ∣
[(Base‘𝑓) /
𝑏][(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))} |
| 31 | 29, 30 | elab4g 3662 |
1
⊢ (𝐾 ∈ Proset ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |