Step | Hyp | Ref
| Expression |
1 | | fveq2 6888 |
. . . 4
β’ (π = πΎ β (Baseβπ) = (BaseβπΎ)) |
2 | | fveq2 6888 |
. . . . 5
β’ (π = πΎ β (leβπ) = (leβπΎ)) |
3 | 2 | sbceq1d 3781 |
. . . 4
β’ (π = πΎ β ([(leβπ) / π]βπ₯ β π βπ¦ β π βπ§ β π (π₯ππ₯ β§ ((π₯ππ¦ β§ π¦ππ§) β π₯ππ§)) β [(leβπΎ) / π]βπ₯ β π βπ¦ β π βπ§ β π (π₯ππ₯ β§ ((π₯ππ¦ β§ π¦ππ§) β π₯ππ§)))) |
4 | 1, 3 | sbceqbid 3783 |
. . 3
β’ (π = πΎ β ([(Baseβπ) / π][(leβπ) / π]βπ₯ β π βπ¦ β π βπ§ β π (π₯ππ₯ β§ ((π₯ππ¦ β§ π¦ππ§) β π₯ππ§)) β [(BaseβπΎ) / π][(leβπΎ) / π]βπ₯ β π βπ¦ β π βπ§ β π (π₯ππ₯ β§ ((π₯ππ¦ β§ π¦ππ§) β π₯ππ§)))) |
5 | | fvex 6901 |
. . . 4
β’
(BaseβπΎ)
β V |
6 | | fvex 6901 |
. . . 4
β’
(leβπΎ) β
V |
7 | | isprs.b |
. . . . . . 7
β’ π΅ = (BaseβπΎ) |
8 | | eqtr3 2758 |
. . . . . . 7
β’ ((π = (BaseβπΎ) β§ π΅ = (BaseβπΎ)) β π = π΅) |
9 | 7, 8 | mpan2 689 |
. . . . . 6
β’ (π = (BaseβπΎ) β π = π΅) |
10 | | raleq 3322 |
. . . . . . . 8
β’ (π = π΅ β (βπ§ β π (π₯ππ₯ β§ ((π₯ππ¦ β§ π¦ππ§) β π₯ππ§)) β βπ§ β π΅ (π₯ππ₯ β§ ((π₯ππ¦ β§ π¦ππ§) β π₯ππ§)))) |
11 | 10 | raleqbi1dv 3333 |
. . . . . . 7
β’ (π = π΅ β (βπ¦ β π βπ§ β π (π₯ππ₯ β§ ((π₯ππ¦ β§ π¦ππ§) β π₯ππ§)) β βπ¦ β π΅ βπ§ β π΅ (π₯ππ₯ β§ ((π₯ππ¦ β§ π¦ππ§) β π₯ππ§)))) |
12 | 11 | raleqbi1dv 3333 |
. . . . . 6
β’ (π = π΅ β (βπ₯ β π βπ¦ β π βπ§ β π (π₯ππ₯ β§ ((π₯ππ¦ β§ π¦ππ§) β π₯ππ§)) β βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (π₯ππ₯ β§ ((π₯ππ¦ β§ π¦ππ§) β π₯ππ§)))) |
13 | 9, 12 | syl 17 |
. . . . 5
β’ (π = (BaseβπΎ) β (βπ₯ β π βπ¦ β π βπ§ β π (π₯ππ₯ β§ ((π₯ππ¦ β§ π¦ππ§) β π₯ππ§)) β βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (π₯ππ₯ β§ ((π₯ππ¦ β§ π¦ππ§) β π₯ππ§)))) |
14 | | isprs.l |
. . . . . . 7
β’ β€ =
(leβπΎ) |
15 | | eqtr3 2758 |
. . . . . . 7
β’ ((π = (leβπΎ) β§ β€ = (leβπΎ)) β π = β€ ) |
16 | 14, 15 | mpan2 689 |
. . . . . 6
β’ (π = (leβπΎ) β π = β€ ) |
17 | | breq 5149 |
. . . . . . . . 9
β’ (π = β€ β (π₯ππ₯ β π₯ β€ π₯)) |
18 | | breq 5149 |
. . . . . . . . . . 11
β’ (π = β€ β (π₯ππ¦ β π₯ β€ π¦)) |
19 | | breq 5149 |
. . . . . . . . . . 11
β’ (π = β€ β (π¦ππ§ β π¦ β€ π§)) |
20 | 18, 19 | anbi12d 631 |
. . . . . . . . . 10
β’ (π = β€ β ((π₯ππ¦ β§ π¦ππ§) β (π₯ β€ π¦ β§ π¦ β€ π§))) |
21 | | breq 5149 |
. . . . . . . . . 10
β’ (π = β€ β (π₯ππ§ β π₯ β€ π§)) |
22 | 20, 21 | imbi12d 344 |
. . . . . . . . 9
β’ (π = β€ β (((π₯ππ¦ β§ π¦ππ§) β π₯ππ§) β ((π₯ β€ π¦ β§ π¦ β€ π§) β π₯ β€ π§))) |
23 | 17, 22 | anbi12d 631 |
. . . . . . . 8
β’ (π = β€ β ((π₯ππ₯ β§ ((π₯ππ¦ β§ π¦ππ§) β π₯ππ§)) β (π₯ β€ π₯ β§ ((π₯ β€ π¦ β§ π¦ β€ π§) β π₯ β€ π§)))) |
24 | 23 | ralbidv 3177 |
. . . . . . 7
β’ (π = β€ β (βπ§ β π΅ (π₯ππ₯ β§ ((π₯ππ¦ β§ π¦ππ§) β π₯ππ§)) β βπ§ β π΅ (π₯ β€ π₯ β§ ((π₯ β€ π¦ β§ π¦ β€ π§) β π₯ β€ π§)))) |
25 | 24 | 2ralbidv 3218 |
. . . . . 6
β’ (π = β€ β (βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (π₯ππ₯ β§ ((π₯ππ¦ β§ π¦ππ§) β π₯ππ§)) β βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (π₯ β€ π₯ β§ ((π₯ β€ π¦ β§ π¦ β€ π§) β π₯ β€ π§)))) |
26 | 16, 25 | syl 17 |
. . . . 5
β’ (π = (leβπΎ) β (βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (π₯ππ₯ β§ ((π₯ππ¦ β§ π¦ππ§) β π₯ππ§)) β βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (π₯ β€ π₯ β§ ((π₯ β€ π¦ β§ π¦ β€ π§) β π₯ β€ π§)))) |
27 | 13, 26 | sylan9bb 510 |
. . . 4
β’ ((π = (BaseβπΎ) β§ π = (leβπΎ)) β (βπ₯ β π βπ¦ β π βπ§ β π (π₯ππ₯ β§ ((π₯ππ¦ β§ π¦ππ§) β π₯ππ§)) β βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (π₯ β€ π₯ β§ ((π₯ β€ π¦ β§ π¦ β€ π§) β π₯ β€ π§)))) |
28 | 5, 6, 27 | sbc2ie 3859 |
. . 3
β’
([(BaseβπΎ) / π][(leβπΎ) / π]βπ₯ β π βπ¦ β π βπ§ β π (π₯ππ₯ β§ ((π₯ππ¦ β§ π¦ππ§) β π₯ππ§)) β βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (π₯ β€ π₯ β§ ((π₯ β€ π¦ β§ π¦ β€ π§) β π₯ β€ π§))) |
29 | 4, 28 | bitrdi 286 |
. 2
β’ (π = πΎ β ([(Baseβπ) / π][(leβπ) / π]βπ₯ β π βπ¦ β π βπ§ β π (π₯ππ₯ β§ ((π₯ππ¦ β§ π¦ππ§) β π₯ππ§)) β βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (π₯ β€ π₯ β§ ((π₯ β€ π¦ β§ π¦ β€ π§) β π₯ β€ π§)))) |
30 | | df-proset 18244 |
. 2
β’ Proset =
{π β£
[(Baseβπ) /
π][(leβπ) / π]βπ₯ β π βπ¦ β π βπ§ β π (π₯ππ₯ β§ ((π₯ππ¦ β§ π¦ππ§) β π₯ππ§))} |
31 | 29, 30 | elab4g 3672 |
1
β’ (πΎ β Proset β (πΎ β V β§ βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (π₯ β€ π₯ β§ ((π₯ β€ π¦ β§ π¦ β€ π§) β π₯ β€ π§)))) |