Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-prt Structured version   Visualization version   GIF version

Definition df-prt 36650
Description: Define the partition predicate. (Contributed by Rodolfo Medina, 13-Oct-2010.)
Assertion
Ref Expression
df-prt (Prt 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
Distinct variable group:   𝑥,𝑦,𝐴

Detailed syntax breakdown of Definition df-prt
StepHypRef Expression
1 cA . . 3 class 𝐴
21wprt 36649 . 2 wff Prt 𝐴
3 vx . . . . . 6 setvar 𝑥
4 vy . . . . . 6 setvar 𝑦
53, 4weq 1971 . . . . 5 wff 𝑥 = 𝑦
63cv 1542 . . . . . . 7 class 𝑥
74cv 1542 . . . . . . 7 class 𝑦
86, 7cin 3880 . . . . . 6 class (𝑥𝑦)
9 c0 4252 . . . . . 6 class
108, 9wceq 1543 . . . . 5 wff (𝑥𝑦) = ∅
115, 10wo 847 . . . 4 wff (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)
1211, 4, 1wral 3062 . . 3 wff 𝑦𝐴 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)
1312, 3, 1wral 3062 . 2 wff 𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)
142, 13wb 209 1 wff (Prt 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
Colors of variables: wff setvar class
This definition is referenced by:  erprt  36651  prtlem14  36652
  Copyright terms: Public domain W3C validator