Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erprt Structured version   Visualization version   GIF version

Theorem erprt 37738
Description: The quotient set of an equivalence relation is a partition. (Contributed by Rodolfo Medina, 13-Oct-2010.)
Assertion
Ref Expression
erprt ( Er 𝑋 → Prt (𝐴 / ))

Proof of Theorem erprt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . 4 (( Er 𝑋 ∧ (𝑥 ∈ (𝐴 / ) ∧ 𝑦 ∈ (𝐴 / ))) → Er 𝑋)
2 simprl 769 . . . 4 (( Er 𝑋 ∧ (𝑥 ∈ (𝐴 / ) ∧ 𝑦 ∈ (𝐴 / ))) → 𝑥 ∈ (𝐴 / ))
3 simprr 771 . . . 4 (( Er 𝑋 ∧ (𝑥 ∈ (𝐴 / ) ∧ 𝑦 ∈ (𝐴 / ))) → 𝑦 ∈ (𝐴 / ))
41, 2, 3qsdisj 8787 . . 3 (( Er 𝑋 ∧ (𝑥 ∈ (𝐴 / ) ∧ 𝑦 ∈ (𝐴 / ))) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
54ralrimivva 3200 . 2 ( Er 𝑋 → ∀𝑥 ∈ (𝐴 / )∀𝑦 ∈ (𝐴 / )(𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
6 df-prt 37737 . 2 (Prt (𝐴 / ) ↔ ∀𝑥 ∈ (𝐴 / )∀𝑦 ∈ (𝐴 / )(𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
75, 6sylibr 233 1 ( Er 𝑋 → Prt (𝐴 / ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wral 3061  cin 3947  c0 4322   Er wer 8699   / cqs 8701  Prt wprt 37736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-er 8702  df-ec 8704  df-qs 8708  df-prt 37737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator