|   | Mathbox for Rodolfo Medina | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > erprt | Structured version Visualization version GIF version | ||
| Description: The quotient set of an equivalence relation is a partition. (Contributed by Rodolfo Medina, 13-Oct-2010.) | 
| Ref | Expression | 
|---|---|
| erprt | ⊢ ( ∼ Er 𝑋 → Prt (𝐴 / ∼ )) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ (( ∼ Er 𝑋 ∧ (𝑥 ∈ (𝐴 / ∼ ) ∧ 𝑦 ∈ (𝐴 / ∼ ))) → ∼ Er 𝑋) | |
| 2 | simprl 771 | . . . 4 ⊢ (( ∼ Er 𝑋 ∧ (𝑥 ∈ (𝐴 / ∼ ) ∧ 𝑦 ∈ (𝐴 / ∼ ))) → 𝑥 ∈ (𝐴 / ∼ )) | |
| 3 | simprr 773 | . . . 4 ⊢ (( ∼ Er 𝑋 ∧ (𝑥 ∈ (𝐴 / ∼ ) ∧ 𝑦 ∈ (𝐴 / ∼ ))) → 𝑦 ∈ (𝐴 / ∼ )) | |
| 4 | 1, 2, 3 | qsdisj 8834 | . . 3 ⊢ (( ∼ Er 𝑋 ∧ (𝑥 ∈ (𝐴 / ∼ ) ∧ 𝑦 ∈ (𝐴 / ∼ ))) → (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) | 
| 5 | 4 | ralrimivva 3202 | . 2 ⊢ ( ∼ Er 𝑋 → ∀𝑥 ∈ (𝐴 / ∼ )∀𝑦 ∈ (𝐴 / ∼ )(𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) | 
| 6 | df-prt 38873 | . 2 ⊢ (Prt (𝐴 / ∼ ) ↔ ∀𝑥 ∈ (𝐴 / ∼ )∀𝑦 ∈ (𝐴 / ∼ )(𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) | |
| 7 | 5, 6 | sylibr 234 | 1 ⊢ ( ∼ Er 𝑋 → Prt (𝐴 / ∼ )) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∩ cin 3950 ∅c0 4333 Er wer 8742 / cqs 8744 Prt wprt 38872 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-er 8745 df-ec 8747 df-qs 8751 df-prt 38873 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |