Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erprt Structured version   Visualization version   GIF version

Theorem erprt 38856
Description: The quotient set of an equivalence relation is a partition. (Contributed by Rodolfo Medina, 13-Oct-2010.)
Assertion
Ref Expression
erprt ( Er 𝑋 → Prt (𝐴 / ))

Proof of Theorem erprt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 (( Er 𝑋 ∧ (𝑥 ∈ (𝐴 / ) ∧ 𝑦 ∈ (𝐴 / ))) → Er 𝑋)
2 simprl 770 . . . 4 (( Er 𝑋 ∧ (𝑥 ∈ (𝐴 / ) ∧ 𝑦 ∈ (𝐴 / ))) → 𝑥 ∈ (𝐴 / ))
3 simprr 772 . . . 4 (( Er 𝑋 ∧ (𝑥 ∈ (𝐴 / ) ∧ 𝑦 ∈ (𝐴 / ))) → 𝑦 ∈ (𝐴 / ))
41, 2, 3qsdisj 8721 . . 3 (( Er 𝑋 ∧ (𝑥 ∈ (𝐴 / ) ∧ 𝑦 ∈ (𝐴 / ))) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
54ralrimivva 3172 . 2 ( Er 𝑋 → ∀𝑥 ∈ (𝐴 / )∀𝑦 ∈ (𝐴 / )(𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
6 df-prt 38855 . 2 (Prt (𝐴 / ) ↔ ∀𝑥 ∈ (𝐴 / )∀𝑦 ∈ (𝐴 / )(𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
75, 6sylibr 234 1 ( Er 𝑋 → Prt (𝐴 / ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  cin 3902  c0 4284   Er wer 8622   / cqs 8624  Prt wprt 38854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-er 8625  df-ec 8627  df-qs 8631  df-prt 38855
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator