Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > erprt | Structured version Visualization version GIF version |
Description: The quotient set of an equivalence relation is a partition. (Contributed by Rodolfo Medina, 13-Oct-2010.) |
Ref | Expression |
---|---|
erprt | ⊢ ( ∼ Er 𝑋 → Prt (𝐴 / ∼ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ (( ∼ Er 𝑋 ∧ (𝑥 ∈ (𝐴 / ∼ ) ∧ 𝑦 ∈ (𝐴 / ∼ ))) → ∼ Er 𝑋) | |
2 | simprl 767 | . . . 4 ⊢ (( ∼ Er 𝑋 ∧ (𝑥 ∈ (𝐴 / ∼ ) ∧ 𝑦 ∈ (𝐴 / ∼ ))) → 𝑥 ∈ (𝐴 / ∼ )) | |
3 | simprr 769 | . . . 4 ⊢ (( ∼ Er 𝑋 ∧ (𝑥 ∈ (𝐴 / ∼ ) ∧ 𝑦 ∈ (𝐴 / ∼ ))) → 𝑦 ∈ (𝐴 / ∼ )) | |
4 | 1, 2, 3 | qsdisj 8541 | . . 3 ⊢ (( ∼ Er 𝑋 ∧ (𝑥 ∈ (𝐴 / ∼ ) ∧ 𝑦 ∈ (𝐴 / ∼ ))) → (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
5 | 4 | ralrimivva 3114 | . 2 ⊢ ( ∼ Er 𝑋 → ∀𝑥 ∈ (𝐴 / ∼ )∀𝑦 ∈ (𝐴 / ∼ )(𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
6 | df-prt 36813 | . 2 ⊢ (Prt (𝐴 / ∼ ) ↔ ∀𝑥 ∈ (𝐴 / ∼ )∀𝑦 ∈ (𝐴 / ∼ )(𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) | |
7 | 5, 6 | sylibr 233 | 1 ⊢ ( ∼ Er 𝑋 → Prt (𝐴 / ∼ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∩ cin 3882 ∅c0 4253 Er wer 8453 / cqs 8455 Prt wprt 36812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-er 8456 df-ec 8458 df-qs 8462 df-prt 36813 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |