![]() |
Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > erprt | Structured version Visualization version GIF version |
Description: The quotient set of an equivalence relation is a partition. (Contributed by Rodolfo Medina, 13-Oct-2010.) |
Ref | Expression |
---|---|
erprt | ⊢ ( ∼ Er 𝑋 → Prt (𝐴 / ∼ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ (( ∼ Er 𝑋 ∧ (𝑥 ∈ (𝐴 / ∼ ) ∧ 𝑦 ∈ (𝐴 / ∼ ))) → ∼ Er 𝑋) | |
2 | simprl 768 | . . . 4 ⊢ (( ∼ Er 𝑋 ∧ (𝑥 ∈ (𝐴 / ∼ ) ∧ 𝑦 ∈ (𝐴 / ∼ ))) → 𝑥 ∈ (𝐴 / ∼ )) | |
3 | simprr 770 | . . . 4 ⊢ (( ∼ Er 𝑋 ∧ (𝑥 ∈ (𝐴 / ∼ ) ∧ 𝑦 ∈ (𝐴 / ∼ ))) → 𝑦 ∈ (𝐴 / ∼ )) | |
4 | 1, 2, 3 | qsdisj 8784 | . . 3 ⊢ (( ∼ Er 𝑋 ∧ (𝑥 ∈ (𝐴 / ∼ ) ∧ 𝑦 ∈ (𝐴 / ∼ ))) → (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
5 | 4 | ralrimivva 3192 | . 2 ⊢ ( ∼ Er 𝑋 → ∀𝑥 ∈ (𝐴 / ∼ )∀𝑦 ∈ (𝐴 / ∼ )(𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
6 | df-prt 38232 | . 2 ⊢ (Prt (𝐴 / ∼ ) ↔ ∀𝑥 ∈ (𝐴 / ∼ )∀𝑦 ∈ (𝐴 / ∼ )(𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) | |
7 | 5, 6 | sylibr 233 | 1 ⊢ ( ∼ Er 𝑋 → Prt (𝐴 / ∼ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ∩ cin 3939 ∅c0 4314 Er wer 8696 / cqs 8698 Prt wprt 38231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-er 8699 df-ec 8701 df-qs 8705 df-prt 38232 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |