Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erprt Structured version   Visualization version   GIF version

Theorem erprt 38859
Description: The quotient set of an equivalence relation is a partition. (Contributed by Rodolfo Medina, 13-Oct-2010.)
Assertion
Ref Expression
erprt ( Er 𝑋 → Prt (𝐴 / ))

Proof of Theorem erprt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 (( Er 𝑋 ∧ (𝑥 ∈ (𝐴 / ) ∧ 𝑦 ∈ (𝐴 / ))) → Er 𝑋)
2 simprl 770 . . . 4 (( Er 𝑋 ∧ (𝑥 ∈ (𝐴 / ) ∧ 𝑦 ∈ (𝐴 / ))) → 𝑥 ∈ (𝐴 / ))
3 simprr 772 . . . 4 (( Er 𝑋 ∧ (𝑥 ∈ (𝐴 / ) ∧ 𝑦 ∈ (𝐴 / ))) → 𝑦 ∈ (𝐴 / ))
41, 2, 3qsdisj 8744 . . 3 (( Er 𝑋 ∧ (𝑥 ∈ (𝐴 / ) ∧ 𝑦 ∈ (𝐴 / ))) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
54ralrimivva 3178 . 2 ( Er 𝑋 → ∀𝑥 ∈ (𝐴 / )∀𝑦 ∈ (𝐴 / )(𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
6 df-prt 38858 . 2 (Prt (𝐴 / ) ↔ ∀𝑥 ∈ (𝐴 / )∀𝑦 ∈ (𝐴 / )(𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
75, 6sylibr 234 1 ( Er 𝑋 → Prt (𝐴 / ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  cin 3910  c0 4292   Er wer 8645   / cqs 8647  Prt wprt 38857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-er 8648  df-ec 8650  df-qs 8654  df-prt 38858
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator