![]() |
Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem14 | Structured version Visualization version GIF version |
Description: Lemma for prter1 37744, prter2 37746 and prtex 37745. (Contributed by Rodolfo Medina, 13-Oct-2010.) |
Ref | Expression |
---|---|
prtlem14 | ⊢ (Prt 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦) → 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-prt 37737 | . . 3 ⊢ (Prt 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) | |
2 | rsp2 3274 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅))) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (Prt 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅))) |
4 | elin 3964 | . . . 4 ⊢ (𝑤 ∈ (𝑥 ∩ 𝑦) ↔ (𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦)) | |
5 | eq0 4343 | . . . . . 6 ⊢ ((𝑥 ∩ 𝑦) = ∅ ↔ ∀𝑤 ¬ 𝑤 ∈ (𝑥 ∩ 𝑦)) | |
6 | sp 2176 | . . . . . 6 ⊢ (∀𝑤 ¬ 𝑤 ∈ (𝑥 ∩ 𝑦) → ¬ 𝑤 ∈ (𝑥 ∩ 𝑦)) | |
7 | 5, 6 | sylbi 216 | . . . . 5 ⊢ ((𝑥 ∩ 𝑦) = ∅ → ¬ 𝑤 ∈ (𝑥 ∩ 𝑦)) |
8 | 7 | pm2.21d 121 | . . . 4 ⊢ ((𝑥 ∩ 𝑦) = ∅ → (𝑤 ∈ (𝑥 ∩ 𝑦) → 𝑥 = 𝑦)) |
9 | 4, 8 | biimtrrid 242 | . . 3 ⊢ ((𝑥 ∩ 𝑦) = ∅ → ((𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦) → 𝑥 = 𝑦)) |
10 | 9 | jao1i 856 | . 2 ⊢ ((𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅) → ((𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦) → 𝑥 = 𝑦)) |
11 | 3, 10 | syl6 35 | 1 ⊢ (Prt 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦) → 𝑥 = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 845 ∀wal 1539 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∩ cin 3947 ∅c0 4322 Prt wprt 37736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-v 3476 df-dif 3951 df-in 3955 df-nul 4323 df-prt 37737 |
This theorem is referenced by: prtlem15 37740 prtlem17 37741 |
Copyright terms: Public domain | W3C validator |