![]() |
Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem14 | Structured version Visualization version GIF version |
Description: Lemma for prter1 38835, prter2 38837 and prtex 38836. (Contributed by Rodolfo Medina, 13-Oct-2010.) |
Ref | Expression |
---|---|
prtlem14 | ⊢ (Prt 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦) → 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-prt 38828 | . . 3 ⊢ (Prt 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) | |
2 | rsp2 3283 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅))) | |
3 | 1, 2 | sylbi 217 | . 2 ⊢ (Prt 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅))) |
4 | elin 3992 | . . . 4 ⊢ (𝑤 ∈ (𝑥 ∩ 𝑦) ↔ (𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦)) | |
5 | eq0 4373 | . . . . . 6 ⊢ ((𝑥 ∩ 𝑦) = ∅ ↔ ∀𝑤 ¬ 𝑤 ∈ (𝑥 ∩ 𝑦)) | |
6 | sp 2184 | . . . . . 6 ⊢ (∀𝑤 ¬ 𝑤 ∈ (𝑥 ∩ 𝑦) → ¬ 𝑤 ∈ (𝑥 ∩ 𝑦)) | |
7 | 5, 6 | sylbi 217 | . . . . 5 ⊢ ((𝑥 ∩ 𝑦) = ∅ → ¬ 𝑤 ∈ (𝑥 ∩ 𝑦)) |
8 | 7 | pm2.21d 121 | . . . 4 ⊢ ((𝑥 ∩ 𝑦) = ∅ → (𝑤 ∈ (𝑥 ∩ 𝑦) → 𝑥 = 𝑦)) |
9 | 4, 8 | biimtrrid 243 | . . 3 ⊢ ((𝑥 ∩ 𝑦) = ∅ → ((𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦) → 𝑥 = 𝑦)) |
10 | 9 | jao1i 857 | . 2 ⊢ ((𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅) → ((𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦) → 𝑥 = 𝑦)) |
11 | 3, 10 | syl6 35 | 1 ⊢ (Prt 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦) → 𝑥 = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∩ cin 3975 ∅c0 4352 Prt wprt 38827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-v 3490 df-dif 3979 df-in 3983 df-nul 4353 df-prt 38828 |
This theorem is referenced by: prtlem15 38831 prtlem17 38832 |
Copyright terms: Public domain | W3C validator |