![]() |
Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem14 | Structured version Visualization version GIF version |
Description: Lemma for prter1 37391, prter2 37393 and prtex 37392. (Contributed by Rodolfo Medina, 13-Oct-2010.) |
Ref | Expression |
---|---|
prtlem14 | ⊢ (Prt 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦) → 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-prt 37384 | . . 3 ⊢ (Prt 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) | |
2 | rsp2 3259 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅))) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (Prt 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅))) |
4 | elin 3930 | . . . 4 ⊢ (𝑤 ∈ (𝑥 ∩ 𝑦) ↔ (𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦)) | |
5 | eq0 4307 | . . . . . 6 ⊢ ((𝑥 ∩ 𝑦) = ∅ ↔ ∀𝑤 ¬ 𝑤 ∈ (𝑥 ∩ 𝑦)) | |
6 | sp 2177 | . . . . . 6 ⊢ (∀𝑤 ¬ 𝑤 ∈ (𝑥 ∩ 𝑦) → ¬ 𝑤 ∈ (𝑥 ∩ 𝑦)) | |
7 | 5, 6 | sylbi 216 | . . . . 5 ⊢ ((𝑥 ∩ 𝑦) = ∅ → ¬ 𝑤 ∈ (𝑥 ∩ 𝑦)) |
8 | 7 | pm2.21d 121 | . . . 4 ⊢ ((𝑥 ∩ 𝑦) = ∅ → (𝑤 ∈ (𝑥 ∩ 𝑦) → 𝑥 = 𝑦)) |
9 | 4, 8 | biimtrrid 242 | . . 3 ⊢ ((𝑥 ∩ 𝑦) = ∅ → ((𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦) → 𝑥 = 𝑦)) |
10 | 9 | jao1i 857 | . 2 ⊢ ((𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅) → ((𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦) → 𝑥 = 𝑦)) |
11 | 3, 10 | syl6 35 | 1 ⊢ (Prt 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦) → 𝑥 = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∨ wo 846 ∀wal 1540 = wceq 1542 ∈ wcel 2107 ∀wral 3061 ∩ cin 3913 ∅c0 4286 Prt wprt 37383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-v 3449 df-dif 3917 df-in 3921 df-nul 4287 df-prt 37384 |
This theorem is referenced by: prtlem15 37387 prtlem17 37388 |
Copyright terms: Public domain | W3C validator |