| Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem14 | Structured version Visualization version GIF version | ||
| Description: Lemma for prter1 38880, prter2 38882 and prtex 38881. (Contributed by Rodolfo Medina, 13-Oct-2010.) |
| Ref | Expression |
|---|---|
| prtlem14 | ⊢ (Prt 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦) → 𝑥 = 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-prt 38873 | . . 3 ⊢ (Prt 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) | |
| 2 | rsp2 3277 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅))) | |
| 3 | 1, 2 | sylbi 217 | . 2 ⊢ (Prt 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅))) |
| 4 | elin 3967 | . . . 4 ⊢ (𝑤 ∈ (𝑥 ∩ 𝑦) ↔ (𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦)) | |
| 5 | eq0 4350 | . . . . . 6 ⊢ ((𝑥 ∩ 𝑦) = ∅ ↔ ∀𝑤 ¬ 𝑤 ∈ (𝑥 ∩ 𝑦)) | |
| 6 | sp 2183 | . . . . . 6 ⊢ (∀𝑤 ¬ 𝑤 ∈ (𝑥 ∩ 𝑦) → ¬ 𝑤 ∈ (𝑥 ∩ 𝑦)) | |
| 7 | 5, 6 | sylbi 217 | . . . . 5 ⊢ ((𝑥 ∩ 𝑦) = ∅ → ¬ 𝑤 ∈ (𝑥 ∩ 𝑦)) |
| 8 | 7 | pm2.21d 121 | . . . 4 ⊢ ((𝑥 ∩ 𝑦) = ∅ → (𝑤 ∈ (𝑥 ∩ 𝑦) → 𝑥 = 𝑦)) |
| 9 | 4, 8 | biimtrrid 243 | . . 3 ⊢ ((𝑥 ∩ 𝑦) = ∅ → ((𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦) → 𝑥 = 𝑦)) |
| 10 | 9 | jao1i 859 | . 2 ⊢ ((𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅) → ((𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦) → 𝑥 = 𝑦)) |
| 11 | 3, 10 | syl6 35 | 1 ⊢ (Prt 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦) → 𝑥 = 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 848 ∀wal 1538 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∩ cin 3950 ∅c0 4333 Prt wprt 38872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-v 3482 df-dif 3954 df-in 3958 df-nul 4334 df-prt 38873 |
| This theorem is referenced by: prtlem15 38876 prtlem17 38877 |
| Copyright terms: Public domain | W3C validator |