Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem14 Structured version   Visualization version   GIF version

Theorem prtlem14 38912
Description: Lemma for prter1 38917, prter2 38919 and prtex 38918. (Contributed by Rodolfo Medina, 13-Oct-2010.)
Assertion
Ref Expression
prtlem14 (Prt 𝐴 → ((𝑥𝐴𝑦𝐴) → ((𝑤𝑥𝑤𝑦) → 𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑤,𝑦   𝑥,𝐴,𝑦
Allowed substitution hint:   𝐴(𝑤)

Proof of Theorem prtlem14
StepHypRef Expression
1 df-prt 38910 . . 3 (Prt 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
2 rsp2 3249 . . 3 (∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅) → ((𝑥𝐴𝑦𝐴) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)))
31, 2sylbi 217 . 2 (Prt 𝐴 → ((𝑥𝐴𝑦𝐴) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)))
4 elin 3918 . . . 4 (𝑤 ∈ (𝑥𝑦) ↔ (𝑤𝑥𝑤𝑦))
5 eq0 4300 . . . . . 6 ((𝑥𝑦) = ∅ ↔ ∀𝑤 ¬ 𝑤 ∈ (𝑥𝑦))
6 sp 2186 . . . . . 6 (∀𝑤 ¬ 𝑤 ∈ (𝑥𝑦) → ¬ 𝑤 ∈ (𝑥𝑦))
75, 6sylbi 217 . . . . 5 ((𝑥𝑦) = ∅ → ¬ 𝑤 ∈ (𝑥𝑦))
87pm2.21d 121 . . . 4 ((𝑥𝑦) = ∅ → (𝑤 ∈ (𝑥𝑦) → 𝑥 = 𝑦))
94, 8biimtrrid 243 . . 3 ((𝑥𝑦) = ∅ → ((𝑤𝑥𝑤𝑦) → 𝑥 = 𝑦))
109jao1i 858 . 2 ((𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅) → ((𝑤𝑥𝑤𝑦) → 𝑥 = 𝑦))
113, 10syl6 35 1 (Prt 𝐴 → ((𝑥𝐴𝑦𝐴) → ((𝑤𝑥𝑤𝑦) → 𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  wal 1539   = wceq 1541  wcel 2111  wral 3047  cin 3901  c0 4283  Prt wprt 38909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-v 3438  df-dif 3905  df-in 3909  df-nul 4284  df-prt 38910
This theorem is referenced by:  prtlem15  38913  prtlem17  38914
  Copyright terms: Public domain W3C validator