Step | Hyp | Ref
| Expression |
1 | | cpthson 28968 |
. 2
class
PathsOn |
2 | | vg |
. . 3
setvar π |
3 | | cvv 3474 |
. . 3
class
V |
4 | | va |
. . . 4
setvar π |
5 | | vb |
. . . 4
setvar π |
6 | 2 | cv 1540 |
. . . . 5
class π |
7 | | cvtx 28253 |
. . . . 5
class
Vtx |
8 | 6, 7 | cfv 6543 |
. . . 4
class
(Vtxβπ) |
9 | | vf |
. . . . . . . 8
setvar π |
10 | 9 | cv 1540 |
. . . . . . 7
class π |
11 | | vp |
. . . . . . . 8
setvar π |
12 | 11 | cv 1540 |
. . . . . . 7
class π |
13 | 4 | cv 1540 |
. . . . . . . 8
class π |
14 | 5 | cv 1540 |
. . . . . . . 8
class π |
15 | | ctrlson 28945 |
. . . . . . . . 9
class
TrailsOn |
16 | 6, 15 | cfv 6543 |
. . . . . . . 8
class
(TrailsOnβπ) |
17 | 13, 14, 16 | co 7408 |
. . . . . . 7
class (π(TrailsOnβπ)π) |
18 | 10, 12, 17 | wbr 5148 |
. . . . . 6
wff π(π(TrailsOnβπ)π)π |
19 | | cpths 28966 |
. . . . . . . 8
class
Paths |
20 | 6, 19 | cfv 6543 |
. . . . . . 7
class
(Pathsβπ) |
21 | 10, 12, 20 | wbr 5148 |
. . . . . 6
wff π(Pathsβπ)π |
22 | 18, 21 | wa 396 |
. . . . 5
wff (π(π(TrailsOnβπ)π)π β§ π(Pathsβπ)π) |
23 | 22, 9, 11 | copab 5210 |
. . . 4
class
{β¨π, πβ© β£ (π(π(TrailsOnβπ)π)π β§ π(Pathsβπ)π)} |
24 | 4, 5, 8, 8, 23 | cmpo 7410 |
. . 3
class (π β (Vtxβπ), π β (Vtxβπ) β¦ {β¨π, πβ© β£ (π(π(TrailsOnβπ)π)π β§ π(Pathsβπ)π)}) |
25 | 2, 3, 24 | cmpt 5231 |
. 2
class (π β V β¦ (π β (Vtxβπ), π β (Vtxβπ) β¦ {β¨π, πβ© β£ (π(π(TrailsOnβπ)π)π β§ π(Pathsβπ)π)})) |
26 | 1, 25 | wceq 1541 |
1
wff PathsOn =
(π β V β¦ (π β (Vtxβπ), π β (Vtxβπ) β¦ {β¨π, πβ© β£ (π(π(TrailsOnβπ)π)π β§ π(Pathsβπ)π)})) |