Detailed syntax breakdown of Definition df-pthson
| Step | Hyp | Ref
| Expression |
| 1 | | cpthson 29732 |
. 2
class
PathsOn |
| 2 | | vg |
. . 3
setvar 𝑔 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | va |
. . . 4
setvar 𝑎 |
| 5 | | vb |
. . . 4
setvar 𝑏 |
| 6 | 2 | cv 1539 |
. . . . 5
class 𝑔 |
| 7 | | cvtx 29013 |
. . . . 5
class
Vtx |
| 8 | 6, 7 | cfv 6561 |
. . . 4
class
(Vtx‘𝑔) |
| 9 | | vf |
. . . . . . . 8
setvar 𝑓 |
| 10 | 9 | cv 1539 |
. . . . . . 7
class 𝑓 |
| 11 | | vp |
. . . . . . . 8
setvar 𝑝 |
| 12 | 11 | cv 1539 |
. . . . . . 7
class 𝑝 |
| 13 | 4 | cv 1539 |
. . . . . . . 8
class 𝑎 |
| 14 | 5 | cv 1539 |
. . . . . . . 8
class 𝑏 |
| 15 | | ctrlson 29709 |
. . . . . . . . 9
class
TrailsOn |
| 16 | 6, 15 | cfv 6561 |
. . . . . . . 8
class
(TrailsOn‘𝑔) |
| 17 | 13, 14, 16 | co 7431 |
. . . . . . 7
class (𝑎(TrailsOn‘𝑔)𝑏) |
| 18 | 10, 12, 17 | wbr 5143 |
. . . . . 6
wff 𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝 |
| 19 | | cpths 29730 |
. . . . . . . 8
class
Paths |
| 20 | 6, 19 | cfv 6561 |
. . . . . . 7
class
(Paths‘𝑔) |
| 21 | 10, 12, 20 | wbr 5143 |
. . . . . 6
wff 𝑓(Paths‘𝑔)𝑝 |
| 22 | 18, 21 | wa 395 |
. . . . 5
wff (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝 ∧ 𝑓(Paths‘𝑔)𝑝) |
| 23 | 22, 9, 11 | copab 5205 |
. . . 4
class
{〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝 ∧ 𝑓(Paths‘𝑔)𝑝)} |
| 24 | 4, 5, 8, 8, 23 | cmpo 7433 |
. . 3
class (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝 ∧ 𝑓(Paths‘𝑔)𝑝)}) |
| 25 | 2, 3, 24 | cmpt 5225 |
. 2
class (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝 ∧ 𝑓(Paths‘𝑔)𝑝)})) |
| 26 | 1, 25 | wceq 1540 |
1
wff PathsOn =
(𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝 ∧ 𝑓(Paths‘𝑔)𝑝)})) |