| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pthsonfval | Structured version Visualization version GIF version | ||
| Description: The set of paths between two vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 16-Jan-2021.) (Revised by AV, 21-Mar-2021.) |
| Ref | Expression |
|---|---|
| pthsonfval.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| pthsonfval | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(PathsOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ∧ 𝑓(Paths‘𝐺)𝑝)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pthsonfval.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | 1vgrex 28965 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ V) |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐺 ∈ V) |
| 4 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
| 5 | 4, 1 | eleqtrdi 2838 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ (Vtx‘𝐺)) |
| 6 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
| 7 | 6, 1 | eleqtrdi 2838 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ (Vtx‘𝐺)) |
| 8 | df-pthson 29679 | . 2 ⊢ PathsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝 ∧ 𝑓(Paths‘𝑔)𝑝)})) | |
| 9 | 3, 5, 7, 8 | mptmpoopabovd 8024 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(PathsOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ∧ 𝑓(Paths‘𝐺)𝑝)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 class class class wbr 5095 {copab 5157 ‘cfv 6486 (class class class)co 7353 Vtxcvtx 28959 TrailsOnctrlson 29653 Pathscpths 29673 PathsOncpthson 29675 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-pthson 29679 |
| This theorem is referenced by: ispthson 29705 |
| Copyright terms: Public domain | W3C validator |