MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthsonfval Structured version   Visualization version   GIF version

Theorem pthsonfval 29670
Description: The set of paths between two vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 16-Jan-2021.) (Revised by AV, 21-Mar-2021.)
Hypothesis
Ref Expression
pthsonfval.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
pthsonfval ((𝐴𝑉𝐵𝑉) → (𝐴(PathsOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝𝑓(Paths‘𝐺)𝑝)})
Distinct variable groups:   𝑓,𝐺,𝑝   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝   𝑓,𝑉,𝑝

Proof of Theorem pthsonfval
Dummy variables 𝑎 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pthsonfval.v . . . 4 𝑉 = (Vtx‘𝐺)
211vgrex 28929 . . 3 (𝐴𝑉𝐺 ∈ V)
32adantr 480 . 2 ((𝐴𝑉𝐵𝑉) → 𝐺 ∈ V)
4 simpl 482 . . 3 ((𝐴𝑉𝐵𝑉) → 𝐴𝑉)
54, 1eleqtrdi 2838 . 2 ((𝐴𝑉𝐵𝑉) → 𝐴 ∈ (Vtx‘𝐺))
6 simpr 484 . . 3 ((𝐴𝑉𝐵𝑉) → 𝐵𝑉)
76, 1eleqtrdi 2838 . 2 ((𝐴𝑉𝐵𝑉) → 𝐵 ∈ (Vtx‘𝐺))
8 df-pthson 29646 . 2 PathsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝𝑓(Paths‘𝑔)𝑝)}))
93, 5, 7, 8mptmpoopabovd 8061 1 ((𝐴𝑉𝐵𝑉) → (𝐴(PathsOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝𝑓(Paths‘𝐺)𝑝)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447   class class class wbr 5107  {copab 5169  cfv 6511  (class class class)co 7387  Vtxcvtx 28923  TrailsOnctrlson 29619  Pathscpths 29640  PathsOncpthson 29642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-pthson 29646
This theorem is referenced by:  ispthson  29672
  Copyright terms: Public domain W3C validator