MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthsonfval Structured version   Visualization version   GIF version

Theorem pthsonfval 29720
Description: The set of paths between two vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 16-Jan-2021.) (Revised by AV, 21-Mar-2021.)
Hypothesis
Ref Expression
pthsonfval.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
pthsonfval ((𝐴𝑉𝐵𝑉) → (𝐴(PathsOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝𝑓(Paths‘𝐺)𝑝)})
Distinct variable groups:   𝑓,𝐺,𝑝   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝   𝑓,𝑉,𝑝

Proof of Theorem pthsonfval
Dummy variables 𝑎 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pthsonfval.v . . . 4 𝑉 = (Vtx‘𝐺)
211vgrex 28982 . . 3 (𝐴𝑉𝐺 ∈ V)
32adantr 480 . 2 ((𝐴𝑉𝐵𝑉) → 𝐺 ∈ V)
4 simpl 482 . . 3 ((𝐴𝑉𝐵𝑉) → 𝐴𝑉)
54, 1eleqtrdi 2843 . 2 ((𝐴𝑉𝐵𝑉) → 𝐴 ∈ (Vtx‘𝐺))
6 simpr 484 . . 3 ((𝐴𝑉𝐵𝑉) → 𝐵𝑉)
76, 1eleqtrdi 2843 . 2 ((𝐴𝑉𝐵𝑉) → 𝐵 ∈ (Vtx‘𝐺))
8 df-pthson 29696 . 2 PathsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝𝑓(Paths‘𝑔)𝑝)}))
93, 5, 7, 8mptmpoopabovd 8020 1 ((𝐴𝑉𝐵𝑉) → (𝐴(PathsOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝𝑓(Paths‘𝐺)𝑝)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437   class class class wbr 5093  {copab 5155  cfv 6486  (class class class)co 7352  Vtxcvtx 28976  TrailsOnctrlson 29670  Pathscpths 29690  PathsOncpthson 29692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-pthson 29696
This theorem is referenced by:  ispthson  29722
  Copyright terms: Public domain W3C validator