MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-spths Structured version   Visualization version   GIF version

Definition df-spths 28971
Description: Define the set of all simple paths (in an undirected graph).

According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A path is a trail in which all vertices (except possibly the first and last) are distinct. ... use the term simple path to refer to a path which contains no repeated vertices."

Therefore, a simple path can be represented by an injective mapping f from { 1 , ... , n } and an injective mapping p from { 0 , ... , n }, where f enumerates the (indices of the) different edges, and p enumerates the vertices. So the simple path is also represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 9-Jan-2021.)

Assertion
Ref Expression
df-spths SPaths = (𝑔 ∈ V ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Trailsβ€˜π‘”)𝑝 ∧ Fun ◑𝑝)})
Distinct variable group:   𝑓,𝑔,𝑝

Detailed syntax breakdown of Definition df-spths
StepHypRef Expression
1 cspths 28967 . 2 class SPaths
2 vg . . 3 setvar 𝑔
3 cvv 3474 . . 3 class V
4 vf . . . . . . 7 setvar 𝑓
54cv 1540 . . . . . 6 class 𝑓
6 vp . . . . . . 7 setvar 𝑝
76cv 1540 . . . . . 6 class 𝑝
82cv 1540 . . . . . . 7 class 𝑔
9 ctrls 28944 . . . . . . 7 class Trails
108, 9cfv 6543 . . . . . 6 class (Trailsβ€˜π‘”)
115, 7, 10wbr 5148 . . . . 5 wff 𝑓(Trailsβ€˜π‘”)𝑝
127ccnv 5675 . . . . . 6 class ◑𝑝
1312wfun 6537 . . . . 5 wff Fun ◑𝑝
1411, 13wa 396 . . . 4 wff (𝑓(Trailsβ€˜π‘”)𝑝 ∧ Fun ◑𝑝)
1514, 4, 6copab 5210 . . 3 class {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Trailsβ€˜π‘”)𝑝 ∧ Fun ◑𝑝)}
162, 3, 15cmpt 5231 . 2 class (𝑔 ∈ V ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Trailsβ€˜π‘”)𝑝 ∧ Fun ◑𝑝)})
171, 16wceq 1541 1 wff SPaths = (𝑔 ∈ V ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Trailsβ€˜π‘”)𝑝 ∧ Fun ◑𝑝)})
Colors of variables: wff setvar class
This definition is referenced by:  spthsfval  28976
  Copyright terms: Public domain W3C validator