Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-spthson Structured version   Visualization version   GIF version

Definition df-spthson 27515
 Description: Define the collection of simple paths with particular endpoints (in an undirected graph). (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 9-Jan-2021.)
Assertion
Ref Expression
df-spthson SPathsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝𝑓(SPaths‘𝑔)𝑝)}))
Distinct variable groups:   𝑓,𝑔,𝑝   𝑎,𝑏,𝑔,𝑓,𝑝

Detailed syntax breakdown of Definition df-spthson
StepHypRef Expression
1 cspthson 27511 . 2 class SPathsOn
2 vg . . 3 setvar 𝑔
3 cvv 3441 . . 3 class V
4 va . . . 4 setvar 𝑎
5 vb . . . 4 setvar 𝑏
62cv 1537 . . . . 5 class 𝑔
7 cvtx 26796 . . . . 5 class Vtx
86, 7cfv 6324 . . . 4 class (Vtx‘𝑔)
9 vf . . . . . . . 8 setvar 𝑓
109cv 1537 . . . . . . 7 class 𝑓
11 vp . . . . . . . 8 setvar 𝑝
1211cv 1537 . . . . . . 7 class 𝑝
134cv 1537 . . . . . . . 8 class 𝑎
145cv 1537 . . . . . . . 8 class 𝑏
15 ctrlson 27488 . . . . . . . . 9 class TrailsOn
166, 15cfv 6324 . . . . . . . 8 class (TrailsOn‘𝑔)
1713, 14, 16co 7135 . . . . . . 7 class (𝑎(TrailsOn‘𝑔)𝑏)
1810, 12, 17wbr 5030 . . . . . 6 wff 𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝
19 cspths 27509 . . . . . . . 8 class SPaths
206, 19cfv 6324 . . . . . . 7 class (SPaths‘𝑔)
2110, 12, 20wbr 5030 . . . . . 6 wff 𝑓(SPaths‘𝑔)𝑝
2218, 21wa 399 . . . . 5 wff (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝𝑓(SPaths‘𝑔)𝑝)
2322, 9, 11copab 5092 . . . 4 class {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝𝑓(SPaths‘𝑔)𝑝)}
244, 5, 8, 8, 23cmpo 7137 . . 3 class (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝𝑓(SPaths‘𝑔)𝑝)})
252, 3, 24cmpt 5110 . 2 class (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝𝑓(SPaths‘𝑔)𝑝)}))
261, 25wceq 1538 1 wff SPathsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝𝑓(SPaths‘𝑔)𝑝)}))
 Colors of variables: wff setvar class This definition is referenced by:  spthson  27537  spthonprop  27541
 Copyright terms: Public domain W3C validator