Detailed syntax breakdown of Definition df-spthson
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cspthson 29734 | . 2
class
SPathsOn | 
| 2 |  | vg | . . 3
setvar 𝑔 | 
| 3 |  | cvv 3479 | . . 3
class
V | 
| 4 |  | va | . . . 4
setvar 𝑎 | 
| 5 |  | vb | . . . 4
setvar 𝑏 | 
| 6 | 2 | cv 1538 | . . . . 5
class 𝑔 | 
| 7 |  | cvtx 29014 | . . . . 5
class
Vtx | 
| 8 | 6, 7 | cfv 6560 | . . . 4
class
(Vtx‘𝑔) | 
| 9 |  | vf | . . . . . . . 8
setvar 𝑓 | 
| 10 | 9 | cv 1538 | . . . . . . 7
class 𝑓 | 
| 11 |  | vp | . . . . . . . 8
setvar 𝑝 | 
| 12 | 11 | cv 1538 | . . . . . . 7
class 𝑝 | 
| 13 | 4 | cv 1538 | . . . . . . . 8
class 𝑎 | 
| 14 | 5 | cv 1538 | . . . . . . . 8
class 𝑏 | 
| 15 |  | ctrlson 29710 | . . . . . . . . 9
class
TrailsOn | 
| 16 | 6, 15 | cfv 6560 | . . . . . . . 8
class
(TrailsOn‘𝑔) | 
| 17 | 13, 14, 16 | co 7432 | . . . . . . 7
class (𝑎(TrailsOn‘𝑔)𝑏) | 
| 18 | 10, 12, 17 | wbr 5142 | . . . . . 6
wff 𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝 | 
| 19 |  | cspths 29732 | . . . . . . . 8
class
SPaths | 
| 20 | 6, 19 | cfv 6560 | . . . . . . 7
class
(SPaths‘𝑔) | 
| 21 | 10, 12, 20 | wbr 5142 | . . . . . 6
wff 𝑓(SPaths‘𝑔)𝑝 | 
| 22 | 18, 21 | wa 395 | . . . . 5
wff (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝 ∧ 𝑓(SPaths‘𝑔)𝑝) | 
| 23 | 22, 9, 11 | copab 5204 | . . . 4
class
{〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝 ∧ 𝑓(SPaths‘𝑔)𝑝)} | 
| 24 | 4, 5, 8, 8, 23 | cmpo 7434 | . . 3
class (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝 ∧ 𝑓(SPaths‘𝑔)𝑝)}) | 
| 25 | 2, 3, 24 | cmpt 5224 | . 2
class (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝 ∧ 𝑓(SPaths‘𝑔)𝑝)})) | 
| 26 | 1, 25 | wceq 1539 | 1
wff SPathsOn =
(𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝 ∧ 𝑓(SPaths‘𝑔)𝑝)})) |