Home | Metamath
Proof Explorer Theorem List (p. 293 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ipdiri 29201 | Distributive law for inner product. Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD ⇒ ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))) | ||
Theorem | ipasslem1 29202 | Lemma for ipassi 29212. Show the inner product associative law for nonnegative integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵))) | ||
Theorem | ipasslem2 29203 | Lemma for ipassi 29212. Show the inner product associative law for nonpositive integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) = (-𝑁 · (𝐴𝑃𝐵))) | ||
Theorem | ipasslem3 29204 | Lemma for ipassi 29212. Show the inner product associative law for all integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵))) | ||
Theorem | ipasslem4 29205 | Lemma for ipassi 29212. Show the inner product associative law for positive integer reciprocals. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) = ((1 / 𝑁) · (𝐴𝑃𝐵))) | ||
Theorem | ipasslem5 29206 | Lemma for ipassi 29212. Show the inner product associative law for rational numbers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ ((𝐶 ∈ ℚ ∧ 𝐴 ∈ 𝑋) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))) | ||
Theorem | ipasslem7 29207* | Lemma for ipassi 29212. Show that ((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)) is continuous on ℝ. (Contributed by NM, 23-Aug-2007.) (Revised by Mario Carneiro, 6-May-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 & ⊢ 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐹 ∈ (𝐽 Cn 𝐾) | ||
Theorem | ipasslem8 29208* | Lemma for ipassi 29212. By ipasslem5 29206, 𝐹 is 0 for all ℚ; since it is continuous and ℚ is dense in ℝ by qdensere2 23969, we conclude 𝐹 is 0 for all ℝ. (Contributed by NM, 24-Aug-2007.) (Revised by Mario Carneiro, 6-May-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 & ⊢ 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ⇒ ⊢ 𝐹:ℝ⟶{0} | ||
Theorem | ipasslem9 29209 | Lemma for ipassi 29212. Conclude from ipasslem8 29208 the inner product associative law for real numbers. (Contributed by NM, 24-Aug-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ (𝐶 ∈ ℝ → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))) | ||
Theorem | ipasslem10 29210 | Lemma for ipassi 29212. Show the inner product associative law for the imaginary number i. (Contributed by NM, 24-Aug-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((i𝑆𝐴)𝑃𝐵) = (i · (𝐴𝑃𝐵)) | ||
Theorem | ipasslem11 29211 | Lemma for ipassi 29212. Show the inner product associative law for all complex numbers. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ (𝐶 ∈ ℂ → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))) | ||
Theorem | ipassi 29212 | Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) | ||
Theorem | dipdir 29213 | Distributive law for inner product. Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))) | ||
Theorem | dipdi 29214 | Distributive law for inner product. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑃(𝐵𝐺𝐶)) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶))) | ||
Theorem | ip2dii 29215 | Inner product of two sums. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 & ⊢ 𝐶 ∈ 𝑋 & ⊢ 𝐷 ∈ 𝑋 ⇒ ⊢ ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶))) | ||
Theorem | dipass 29216 | Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) | ||
Theorem | dipassr 29217 | "Associative" law for second argument of inner product (compare dipass 29216). (Contributed by NM, 22-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑃(𝐵𝑆𝐶)) = ((∗‘𝐵) · (𝐴𝑃𝐶))) | ||
Theorem | dipassr2 29218 | "Associative" law for inner product. Conjugate version of dipassr 29217. (Contributed by NM, 23-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑃((∗‘𝐵)𝑆𝐶)) = (𝐵 · (𝐴𝑃𝐶))) | ||
Theorem | dipsubdir 29219 | Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑀𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) − (𝐵𝑃𝐶))) | ||
Theorem | dipsubdi 29220 | Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑃(𝐵𝑀𝐶)) = ((𝐴𝑃𝐵) − (𝐴𝑃𝐶))) | ||
Theorem | pythi 29221 | The Pythagorean theorem for an arbitrary complex inner product (pre-Hilbert) space 𝑈. The square of the norm of the sum of two orthogonal vectors (i.e. whose inner product is 0) is the sum of the squares of their norms. Problem 2 in [Kreyszig] p. 135. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ ((𝐴𝑃𝐵) = 0 → ((𝑁‘(𝐴𝐺𝐵))↑2) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))) | ||
Theorem | siilem1 29222 | Lemma for sii 29225. (Contributed by NM, 23-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝐶 ∈ ℂ & ⊢ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ & ⊢ 0 ≤ (𝐶 · (𝐴𝑃𝐵)) ⇒ ⊢ ((𝐵𝑃𝐴) = (𝐶 · ((𝑁‘𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁‘𝐵)↑2)))) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵))) | ||
Theorem | siilem2 29223 | Lemma for sii 29225. (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ ((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))) → ((𝐵𝑃𝐴) = (𝐶 · ((𝑁‘𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁‘𝐵)↑2)))) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵)))) | ||
Theorem | siii 29224 | Inference from sii 29225. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵)) | ||
Theorem | sii 29225 | Obsolete version of ipcau 24411 as of 22-Sep-2024. Schwarz inequality. Part of Lemma 3-2.1(a) of [Kreyszig] p. 137. This is also called the Cauchy-Schwarz inequality by some authors and Bunjakovaskij-Cauchy-Schwarz inequality by others. See also Theorems bcseqi 29491, bcsiALT 29550, bcsiHIL 29551, csbren 24572. (Contributed by NM, 12-Jan-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD ⇒ ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵))) | ||
Theorem | ipblnfi 29226* | A function 𝐹 generated by varying the first argument of an inner product (with its second argument a fixed vector 𝐴) is a bounded linear functional, i.e. a bounded linear operator from the vector space to ℂ. (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐶 = 〈〈 + , · 〉, abs〉 & ⊢ 𝐵 = (𝑈 BLnOp 𝐶) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝑥𝑃𝐴)) ⇒ ⊢ (𝐴 ∈ 𝑋 → 𝐹 ∈ 𝐵) | ||
Theorem | ip2eqi 29227* | Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD ⇒ ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | phoeqi 29228* | A condition implying that two operators are equal. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD ⇒ ⊢ ((𝑆:𝑌⟶𝑋 ∧ 𝑇:𝑌⟶𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (𝑥𝑃(𝑆‘𝑦)) = (𝑥𝑃(𝑇‘𝑦)) ↔ 𝑆 = 𝑇)) | ||
Theorem | ajmoi 29229* | Every operator has at most one adjoint. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD ⇒ ⊢ ∃*𝑠(𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))) | ||
Theorem | ajfuni 29230 | The adjoint function is a function. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.) |
⊢ 𝐴 = (𝑈adj𝑊) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ Fun 𝐴 | ||
Theorem | ajfun 29231 | The adjoint function is a function. This is not immediately apparent from df-aj 29121 but results from the uniqueness shown by ajmoi 29229. (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.) |
⊢ 𝐴 = (𝑈adj𝑊) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ 𝑊 ∈ NrmCVec) → Fun 𝐴) | ||
Theorem | ajval 29232* | Value of the adjoint function. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑄 = (·𝑖OLD‘𝑊) & ⊢ 𝐴 = (𝑈adj𝑊) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝐴‘𝑇) = (℩𝑠(𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))))) | ||
Syntax | ccbn 29233 | Extend class notation with the class of all complex Banach spaces. |
class CBan | ||
Definition | df-cbn 29234 | Define the class of all complex Banach spaces. (Contributed by NM, 5-Dec-2006.) Use df-bn 24509 instead. (New usage is discouraged.) |
⊢ CBan = {𝑢 ∈ NrmCVec ∣ (IndMet‘𝑢) ∈ (CMet‘(BaseSet‘𝑢))} | ||
Theorem | iscbn 29235 | A complex Banach space is a normed complex vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006.) Use isbn 24511 instead. (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ 𝐷 ∈ (CMet‘𝑋))) | ||
Theorem | cbncms 29236 | The induced metric on complex Banach space is complete. (Contributed by NM, 8-Sep-2007.) Use bncmet 24520 (or preferably bncms 24517) instead. (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋)) | ||
Theorem | bnnv 29237 | Every complex Banach space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) Use bnnvc 24513 instead. (New usage is discouraged.) |
⊢ (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec) | ||
Theorem | bnrel 29238 | The class of all complex Banach spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.) |
⊢ Rel CBan | ||
Theorem | bnsscmcl 29239 | A subspace of a Banach space is a Banach space iff it is closed in the norm-induced metric of the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐻 = (SubSp‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) ⇒ ⊢ ((𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻) → (𝑊 ∈ CBan ↔ 𝑌 ∈ (Clsd‘𝐽))) | ||
Theorem | cnbn 29240 | The set of complex numbers is a complex Banach space. (Contributed by Steve Rodriguez, 4-Jan-2007.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ 𝑈 ∈ CBan | ||
Theorem | ubthlem1 29241* | Lemma for ubth 29244. The function 𝐴 exhibits a countable collection of sets that are closed, being the inverse image under 𝑡 of the closed ball of radius 𝑘, and by assumption they cover 𝑋. Thus, by the Baire Category theorem bcth2 24503, for some 𝑛 the set 𝐴‘𝑛 has an interior, meaning that there is a closed ball {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} in the set. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑊) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑈 ∈ CBan & ⊢ 𝑊 ∈ NrmCVec & ⊢ (𝜑 → 𝑇 ⊆ (𝑈 BLnOp 𝑊)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐) & ⊢ 𝐴 = (𝑘 ∈ ℕ ↦ {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘}) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ ∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴‘𝑛)) | ||
Theorem | ubthlem2 29242* | Lemma for ubth 29244. Given that there is a closed ball 𝐵(𝑃, 𝑅) in 𝐴‘𝐾, for any 𝑥 ∈ 𝐵(0, 1), we have 𝑃 + 𝑅 · 𝑥 ∈ 𝐵(𝑃, 𝑅) and 𝑃 ∈ 𝐵(𝑃, 𝑅), so both of these have norm(𝑡(𝑧)) ≤ 𝐾 and so norm(𝑡(𝑥 )) ≤ (norm(𝑡(𝑃)) + norm(𝑡(𝑃 + 𝑅 · 𝑥))) / 𝑅 ≤ ( 𝐾 + 𝐾) / 𝑅, which is our desired uniform bound. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑊) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑈 ∈ CBan & ⊢ 𝑊 ∈ NrmCVec & ⊢ (𝜑 → 𝑇 ⊆ (𝑈 BLnOp 𝑊)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐) & ⊢ 𝐴 = (𝑘 ∈ ℕ ↦ {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘}) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝐴‘𝐾)) ⇒ ⊢ (𝜑 → ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑) | ||
Theorem | ubthlem3 29243* | Lemma for ubth 29244. Prove the reverse implication, using nmblolbi 29171. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑊) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑈 ∈ CBan & ⊢ 𝑊 ∈ NrmCVec & ⊢ (𝜑 → 𝑇 ⊆ (𝑈 BLnOp 𝑊)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝑋 ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑)) | ||
Theorem | ubth 29244* | Uniform Boundedness Theorem, also called the Banach-Steinhaus Theorem. Let 𝑇 be a collection of bounded linear operators on a Banach space. If, for every vector 𝑥, the norms of the operators' values are bounded, then the operators' norms are also bounded. Theorem 4.7-3 of [Kreyszig] p. 249. See also http://en.wikipedia.org/wiki/Uniform_boundedness_principle. (Contributed by NM, 7-Nov-2007.) (Proof shortened by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑊) & ⊢ 𝑀 = (𝑈 normOpOLD 𝑊) ⇒ ⊢ ((𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ⊆ (𝑈 BLnOp 𝑊)) → (∀𝑥 ∈ 𝑋 ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐 ↔ ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑀‘𝑡) ≤ 𝑑)) | ||
Theorem | minvecolem1 29245* | Lemma for minveco 29255. The set of all distances from points of 𝑌 to 𝐴 are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) & ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ⇒ ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) | ||
Theorem | minvecolem2 29246* | Lemma for minveco 29255. Any two points 𝐾 and 𝐿 in 𝑌 are close to each other if they are close to the infimum of distance to 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) & ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) & ⊢ (𝜑 → 𝐾 ∈ 𝑌) & ⊢ (𝜑 → 𝐿 ∈ 𝑌) & ⊢ (𝜑 → ((𝐴𝐷𝐾)↑2) ≤ ((𝑆↑2) + 𝐵)) & ⊢ (𝜑 → ((𝐴𝐷𝐿)↑2) ≤ ((𝑆↑2) + 𝐵)) ⇒ ⊢ (𝜑 → ((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵)) | ||
Theorem | minvecolem3 29247* | Lemma for minveco 29255. The sequence formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) & ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑌) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) | ||
Theorem | minvecolem4a 29248* | Lemma for minveco 29255. 𝐹 is convergent in the subspace topology on 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) & ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑌) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) ⇒ ⊢ (𝜑 → 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) | ||
Theorem | minvecolem4b 29249* | Lemma for minveco 29255. The convergent point of the cauchy sequence 𝐹 is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) & ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑌) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) ⇒ ⊢ (𝜑 → ((⇝𝑡‘𝐽)‘𝐹) ∈ 𝑋) | ||
Theorem | minvecolem4c 29250* | Lemma for minveco 29255. The infimum of the distances to 𝐴 is a real number. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) & ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑌) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) ⇒ ⊢ (𝜑 → 𝑆 ∈ ℝ) | ||
Theorem | minvecolem4 29251* | Lemma for minveco 29255. The convergent point of the cauchy sequence 𝐹 attains the minimum distance, and so is closer to 𝐴 than any other point in 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) & ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑌) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) & ⊢ 𝑇 = (1 / (((((𝐴𝐷((⇝𝑡‘𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))) | ||
Theorem | minvecolem5 29252* | Lemma for minveco 29255. Discharge the assumption about the sequence 𝐹 by applying countable choice ax-cc 10200. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) & ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))) | ||
Theorem | minvecolem6 29253* | Lemma for minveco 29255. Any minimal point is less than 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) & ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))) | ||
Theorem | minvecolem7 29254* | Lemma for minveco 29255. Since any two minimal points are distance zero away from each other, the minimal point is unique. (Contributed by Mario Carneiro, 9-May-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) & ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))) | ||
Theorem | minveco 29255* | Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace 𝑊 that minimizes the distance to an arbitrary vector 𝐴 in a parent inner product space. Theorem 3.3-1 of [Kreyszig] p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008.) (Proof shortened by Mario Carneiro, 9-May-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) & ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))) | ||
Syntax | chlo 29256 | Extend class notation with the class of all complex Hilbert spaces. |
class CHilOLD | ||
Definition | df-hlo 29257 | Define the class of all complex Hilbert spaces. A Hilbert space is a Banach space which is also an inner product space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
⊢ CHilOLD = (CBan ∩ CPreHilOLD) | ||
Theorem | ishlo 29258 | The predicate "is a complex Hilbert space." A Hilbert space is a Banach space which is also an inner product space, i.e. whose norm satisfies the parallelogram law. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
⊢ (𝑈 ∈ CHilOLD ↔ (𝑈 ∈ CBan ∧ 𝑈 ∈ CPreHilOLD)) | ||
Theorem | hlobn 29259 | Every complex Hilbert space is a complex Banach space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CBan) | ||
Theorem | hlph 29260 | Every complex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007.) (New usage is discouraged.) |
⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CPreHilOLD) | ||
Theorem | hlrel 29261 | The class of all complex Hilbert spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.) |
⊢ Rel CHilOLD | ||
Theorem | hlnv 29262 | Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.) |
⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ NrmCVec) | ||
Theorem | hlnvi 29263 | Every complex Hilbert space is a normed complex vector space. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
⊢ 𝑈 ∈ CHilOLD ⇒ ⊢ 𝑈 ∈ NrmCVec | ||
Theorem | hlvc 29264 | Every complex Hilbert space is a complex vector space. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑊 = (1st ‘𝑈) ⇒ ⊢ (𝑈 ∈ CHilOLD → 𝑊 ∈ CVecOLD) | ||
Theorem | hlcmet 29265 | The induced metric on a complex Hilbert space is complete. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ (𝑈 ∈ CHilOLD → 𝐷 ∈ (CMet‘𝑋)) | ||
Theorem | hlmet 29266 | The induced metric on a complex Hilbert space. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ (𝑈 ∈ CHilOLD → 𝐷 ∈ (Met‘𝑋)) | ||
Theorem | hlpar2 29267 | The parallelogram law satisfied by Hilbert space vectors. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝑀𝐵))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) | ||
Theorem | hlpar 29268 | The parallelogram law satisfied by Hilbert space vectors. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) | ||
Theorem | hlex 29269 | The base set of a Hilbert space is a set. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) ⇒ ⊢ 𝑋 ∈ V | ||
Theorem | hladdf 29270 | Mapping for Hilbert space vector addition. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) ⇒ ⊢ (𝑈 ∈ CHilOLD → 𝐺:(𝑋 × 𝑋)⟶𝑋) | ||
Theorem | hlcom 29271 | Hilbert space vector addition is commutative. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴)) | ||
Theorem | hlass 29272 | Hilbert space vector addition is associative. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶))) | ||
Theorem | hl0cl 29273 | The Hilbert space zero vector. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) ⇒ ⊢ (𝑈 ∈ CHilOLD → 𝑍 ∈ 𝑋) | ||
Theorem | hladdid 29274 | Hilbert space addition with the zero vector. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝑍) = 𝐴) | ||
Theorem | hlmulf 29275 | Mapping for Hilbert space scalar multiplication. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ (𝑈 ∈ CHilOLD → 𝑆:(ℂ × 𝑋)⟶𝑋) | ||
Theorem | hlmulid 29276 | Hilbert space scalar multiplication by one. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) | ||
Theorem | hlmulass 29277 | Hilbert space scalar multiplication associative law. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → ((𝐴 · 𝐵)𝑆𝐶) = (𝐴𝑆(𝐵𝑆𝐶))) | ||
Theorem | hldi 29278 | Hilbert space scalar multiplication distributive law. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶))) | ||
Theorem | hldir 29279 | Hilbert space scalar multiplication distributive law. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → ((𝐴 + 𝐵)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶))) | ||
Theorem | hlmul0 29280 | Hilbert space scalar multiplication by zero. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋) → (0𝑆𝐴) = 𝑍) | ||
Theorem | hlipf 29281 | Mapping for Hilbert space inner product. (Contributed by NM, 19-Nov-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ (𝑈 ∈ CHilOLD → 𝑃:(𝑋 × 𝑋)⟶ℂ) | ||
Theorem | hlipcj 29282 | Conjugate law for Hilbert space inner product. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑃𝐵) = (∗‘(𝐵𝑃𝐴))) | ||
Theorem | hlipdir 29283 | Distributive law for Hilbert space inner product. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))) | ||
Theorem | hlipass 29284 | Associative law for Hilbert space inner product. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) | ||
Theorem | hlipgt0 29285 | The inner product of a Hilbert space vector by itself is positive. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍) → 0 < (𝐴𝑃𝐴)) | ||
Theorem | hlcompl 29286 | Completeness of a Hilbert space. (Contributed by NM, 8-Sep-2007.) (Revised by Mario Carneiro, 9-May-2014.) (New usage is discouraged.) |
⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ dom (⇝𝑡‘𝐽)) | ||
Theorem | cnchl 29287 | The set of complex numbers is a complex Hilbert space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ 𝑈 ∈ CHilOLD | ||
Theorem | htthlem 29288* | Lemma for htth 29289. The collection 𝐾, which consists of functions 𝐹(𝑧)(𝑤) = 〈𝑤 ∣ 𝑇(𝑧)〉 = 〈𝑇(𝑤) ∣ 𝑧〉 for each 𝑧 in the unit ball, is a collection of bounded linear functions by ipblnfi 29226, so by the Uniform Boundedness theorem ubth 29244, there is a uniform bound 𝑦 on ∥ 𝐹(𝑥) ∥ for all 𝑥 in the unit ball. Then ∣ 𝑇(𝑥) ∣ ↑2 = 〈𝑇(𝑥) ∣ 𝑇(𝑥)〉 = 𝐹(𝑥)( 𝑇(𝑥)) ≤ 𝑦 ∣ 𝑇(𝑥) ∣, so ∣ 𝑇(𝑥) ∣ ≤ 𝑦 and 𝑇 is bounded. (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝐿 = (𝑈 LnOp 𝑈) & ⊢ 𝐵 = (𝑈 BLnOp 𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑈 ∈ CHilOLD & ⊢ 𝑊 = 〈〈 + , · 〉, abs〉 & ⊢ (𝜑 → 𝑇 ∈ 𝐿) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑃(𝑇‘𝑦)) = ((𝑇‘𝑥)𝑃𝑦)) & ⊢ 𝐹 = (𝑧 ∈ 𝑋 ↦ (𝑤 ∈ 𝑋 ↦ (𝑤𝑃(𝑇‘𝑧)))) & ⊢ 𝐾 = (𝐹 “ {𝑧 ∈ 𝑋 ∣ (𝑁‘𝑧) ≤ 1}) ⇒ ⊢ (𝜑 → 𝑇 ∈ 𝐵) | ||
Theorem | htth 29289* | Hellinger-Toeplitz Theorem: any self-adjoint linear operator defined on all of Hilbert space is bounded. Theorem 10.1-1 of [Kreyszig] p. 525. Discovered by E. Hellinger and O. Toeplitz in 1910, "it aroused both admiration and puzzlement since the theorem establishes a relation between properties of two different kinds, namely, the properties of being defined everywhere and being bounded." (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝐿 = (𝑈 LnOp 𝑈) & ⊢ 𝐵 = (𝑈 BLnOp 𝑈) ⇒ ⊢ ((𝑈 ∈ CHilOLD ∧ 𝑇 ∈ 𝐿 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑃(𝑇‘𝑦)) = ((𝑇‘𝑥)𝑃𝑦)) → 𝑇 ∈ 𝐵) | ||
This part contains the definitions and theorems used by the Hilbert Space Explorer (HSE), mmhil.html. Because it axiomatizes a single complex Hilbert space whose existence is assumed, its usefulness is limited. For example, it cannot work with real or quaternion Hilbert spaces and it cannot study relationships between two Hilbert spaces. More information can be found on the Hilbert Space Explorer page. Future development should instead work with general Hilbert spaces as defined by df-hil 20920; note that df-hil 20920 uses extensible structures. The intent is for this deprecated section to be deleted once all its theorems have been translated into extensible structure versions (or are not useful). Many of the theorems in this section have already been translated to extensible structure versions, but there is still a lot in this section that might be useful for future reference. It is much easier to translate these by hand from this section than to start from scratch from textbook proofs, since the HSE omits no details. | ||
Syntax | chba 29290 | Extend class notation with Hilbert vector space. |
class ℋ | ||
Syntax | cva 29291 | Extend class notation with vector addition in Hilbert space. In the literature, the subscript "h" is omitted, but we need it to avoid ambiguity with complex number addition + caddc 10883. |
class +ℎ | ||
Syntax | csm 29292 | Extend class notation with scalar multiplication in Hilbert space. In the literature scalar multiplication is usually indicated by juxtaposition, but we need an explicit symbol to prevent ambiguity. |
class ·ℎ | ||
Syntax | csp 29293 | Extend class notation with inner (scalar) product in Hilbert space. In the literature, the inner product of 𝐴 and 𝐵 is usually written 〈𝐴, 𝐵〉 but our operation notation allows us to use existing theorems about operations and also eliminates ambiguity with the definition of an ordered pair df-op 4569. |
class ·ih | ||
Syntax | cno 29294 | Extend class notation with the norm function in Hilbert space. In the literature, the norm of 𝐴 is usually written "|| 𝐴 ||", but we use function notation to take advantage of our existing theorems about functions. |
class normℎ | ||
Syntax | c0v 29295 | Extend class notation with zero vector in Hilbert space. |
class 0ℎ | ||
Syntax | cmv 29296 | Extend class notation with vector subtraction in Hilbert space. |
class −ℎ | ||
Syntax | ccauold 29297 | Extend class notation with set of Cauchy sequences in Hilbert space. |
class Cauchy | ||
Syntax | chli 29298 | Extend class notation with convergence relation in Hilbert space. |
class ⇝𝑣 | ||
Syntax | csh 29299 | Extend class notation with set of subspaces of a Hilbert space. |
class Sℋ | ||
Syntax | cch 29300 | Extend class notation with set of closed subspaces of a Hilbert space. |
class Cℋ |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |