![]() |
Metamath
Proof Explorer Theorem List (p. 293 of 435) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28330) |
![]() (28331-29855) |
![]() (29856-43447) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | hodidi 29201 | Difference of a Hilbert space operator from itself. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑇 −op 𝑇) = 0hop | ||
Theorem | ho0coi 29202 | Composition of the zero operator and a Hilbert space operator. (Contributed by NM, 9-Aug-2006.) (New usage is discouraged.) |
⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ ( 0hop ∘ 𝑇) = 0hop | ||
Theorem | hoid1i 29203 | Composition of Hilbert space operator with unit identity. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.) |
⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑇 ∘ Iop ) = 𝑇 | ||
Theorem | hoid1ri 29204 | Composition of Hilbert space operator with unit identity. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.) |
⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ ( Iop ∘ 𝑇) = 𝑇 | ||
Theorem | hoaddid1 29205 | Sum of a Hilbert space operator with the zero operator. (Contributed by NM, 25-Jul-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (𝑇 +op 0hop ) = 𝑇) | ||
Theorem | hodid 29206 | Difference of a Hilbert space operator from itself. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (𝑇 −op 𝑇) = 0hop ) | ||
Theorem | hon0 29207 | A Hilbert space operator is not empty. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → ¬ 𝑇 = ∅) | ||
Theorem | hodseqi 29208 | Subtraction and addition of equal Hilbert space operators. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑆 +op (𝑇 −op 𝑆)) = 𝑇 | ||
Theorem | ho0subi 29209 | Subtraction of Hilbert space operators expressed in terms of difference from zero. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑆 −op 𝑇) = (𝑆 +op ( 0hop −op 𝑇)) | ||
Theorem | honegsubi 29210 | Relationship between Hilbert operator addition and subtraction. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑆 +op (-1 ·op 𝑇)) = (𝑆 −op 𝑇) | ||
Theorem | ho0sub 29211 | Subtraction of Hilbert space operators expressed in terms of difference from zero. (Contributed by NM, 25-Jul-2006.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 −op 𝑇) = (𝑆 +op ( 0hop −op 𝑇))) | ||
Theorem | hosubid1 29212 | The zero operator subtracted from a Hilbert space operator. (Contributed by NM, 25-Jul-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (𝑇 −op 0hop ) = 𝑇) | ||
Theorem | honegsub 29213 | Relationship between Hilbert space operator addition and subtraction. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 +op (-1 ·op 𝑈)) = (𝑇 −op 𝑈)) | ||
Theorem | homulid2 29214 | An operator equals its scalar product with one. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇) = 𝑇) | ||
Theorem | homco1 29215 | Associative law for scalar product and composition of operators. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) ∘ 𝑈) = (𝐴 ·op (𝑇 ∘ 𝑈))) | ||
Theorem | homulass 29216 | Scalar product associative law for Hilbert space operators. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 · 𝐵) ·op 𝑇) = (𝐴 ·op (𝐵 ·op 𝑇))) | ||
Theorem | hoadddi 29217 | Scalar product distributive law for Hilbert space operators. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op (𝑇 +op 𝑈)) = ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))) | ||
Theorem | hoadddir 29218 | Scalar product reverse distributive law for Hilbert space operators. (Contributed by NM, 25-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 + 𝐵) ·op 𝑇) = ((𝐴 ·op 𝑇) +op (𝐵 ·op 𝑇))) | ||
Theorem | homul12 29219 | Swap first and second factors in a nested operator scalar product. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op (𝐵 ·op 𝑇)) = (𝐵 ·op (𝐴 ·op 𝑇))) | ||
Theorem | honegneg 29220 | Double negative of a Hilbert space operator. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (-1 ·op (-1 ·op 𝑇)) = 𝑇) | ||
Theorem | hosubneg 29221 | Relationship between operator subtraction and negative. (Contributed by NM, 25-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 −op (-1 ·op 𝑈)) = (𝑇 +op 𝑈)) | ||
Theorem | hosubdi 29222 | Scalar product distributive law for operator difference. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op (𝑇 −op 𝑈)) = ((𝐴 ·op 𝑇) −op (𝐴 ·op 𝑈))) | ||
Theorem | honegdi 29223 | Distribution of negative over addition. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (-1 ·op (𝑇 +op 𝑈)) = ((-1 ·op 𝑇) +op (-1 ·op 𝑈))) | ||
Theorem | honegsubdi 29224 | Distribution of negative over subtraction. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (-1 ·op (𝑇 −op 𝑈)) = ((-1 ·op 𝑇) +op 𝑈)) | ||
Theorem | honegsubdi2 29225 | Distribution of negative over subtraction. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (-1 ·op (𝑇 −op 𝑈)) = (𝑈 −op 𝑇)) | ||
Theorem | hosubsub2 29226 | Law for double subtraction of Hilbert space operators. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑆 −op (𝑇 −op 𝑈)) = (𝑆 +op (𝑈 −op 𝑇))) | ||
Theorem | hosub4 29227 | Rearrangement of 4 terms in a mixed addition and subtraction of Hilbert space operators. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
⊢ (((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → ((𝑅 +op 𝑆) −op (𝑇 +op 𝑈)) = ((𝑅 −op 𝑇) +op (𝑆 −op 𝑈))) | ||
Theorem | hosubadd4 29228 | Rearrangement of 4 terms in a mixed addition and subtraction of Hilbert space operators. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
⊢ (((𝑅: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → ((𝑅 −op 𝑆) −op (𝑇 −op 𝑈)) = ((𝑅 +op 𝑈) −op (𝑆 +op 𝑇))) | ||
Theorem | hoaddsubass 29229 | Associative-type law for addition and subtraction of Hilbert space operators. (Contributed by NM, 25-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝑆 +op 𝑇) −op 𝑈) = (𝑆 +op (𝑇 −op 𝑈))) | ||
Theorem | hoaddsub 29230 | Law for operator addition and subtraction of Hilbert space operators. (Contributed by NM, 25-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝑆 +op 𝑇) −op 𝑈) = ((𝑆 −op 𝑈) +op 𝑇)) | ||
Theorem | hosubsub 29231 | Law for double subtraction of Hilbert space operators. (Contributed by NM, 25-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑆 −op (𝑇 −op 𝑈)) = ((𝑆 −op 𝑇) +op 𝑈)) | ||
Theorem | hosubsub4 29232 | Law for double subtraction of Hilbert space operators. (Contributed by NM, 25-Aug-2006.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝑆 −op 𝑇) −op 𝑈) = (𝑆 −op (𝑇 +op 𝑈))) | ||
Theorem | ho2times 29233 | Two times a Hilbert space operator. (Contributed by NM, 26-Aug-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (2 ·op 𝑇) = (𝑇 +op 𝑇)) | ||
Theorem | hoaddsubassi 29234 | Associativity of sum and difference of Hilbert space operators. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
⊢ 𝑅: ℋ⟶ ℋ & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ ((𝑅 +op 𝑆) −op 𝑇) = (𝑅 +op (𝑆 −op 𝑇)) | ||
Theorem | hoaddsubi 29235 | Law for sum and difference of Hilbert space operators. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
⊢ 𝑅: ℋ⟶ ℋ & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ ((𝑅 +op 𝑆) −op 𝑇) = ((𝑅 −op 𝑇) +op 𝑆) | ||
Theorem | hosd1i 29236 | Hilbert space operator sum expressed in terms of difference. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
⊢ 𝑇: ℋ⟶ ℋ & ⊢ 𝑈: ℋ⟶ ℋ ⇒ ⊢ (𝑇 +op 𝑈) = (𝑇 −op ( 0hop −op 𝑈)) | ||
Theorem | hosd2i 29237 | Hilbert space operator sum expressed in terms of difference. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
⊢ 𝑇: ℋ⟶ ℋ & ⊢ 𝑈: ℋ⟶ ℋ ⇒ ⊢ (𝑇 +op 𝑈) = (𝑇 −op ((𝑈 −op 𝑈) −op 𝑈)) | ||
Theorem | hopncani 29238 | Hilbert space operator cancellation law. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑇: ℋ⟶ ℋ & ⊢ 𝑈: ℋ⟶ ℋ ⇒ ⊢ ((𝑇 +op 𝑈) −op 𝑈) = 𝑇 | ||
Theorem | honpcani 29239 | Hilbert space operator cancellation law. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑇: ℋ⟶ ℋ & ⊢ 𝑈: ℋ⟶ ℋ ⇒ ⊢ ((𝑇 −op 𝑈) +op 𝑈) = 𝑇 | ||
Theorem | hosubeq0i 29240 | If the difference between two operators is zero, they are equal. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.) |
⊢ 𝑇: ℋ⟶ ℋ & ⊢ 𝑈: ℋ⟶ ℋ ⇒ ⊢ ((𝑇 −op 𝑈) = 0hop ↔ 𝑇 = 𝑈) | ||
Theorem | honpncani 29241 | Hilbert space operator cancellation law. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
⊢ 𝑅: ℋ⟶ ℋ & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ ((𝑅 −op 𝑆) +op (𝑆 −op 𝑇)) = (𝑅 −op 𝑇) | ||
Theorem | ho01i 29242* | A condition implying that a Hilbert space operator is identically zero. Lemma 3.2(S8) of [Beran] p. 95. (Contributed by NM, 28-Jan-2006.) (New usage is discouraged.) |
⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = 0 ↔ 𝑇 = 0hop ) | ||
Theorem | ho02i 29243* | A condition implying that a Hilbert space operator is identically zero. Lemma 3.2(S10) of [Beran] p. 95. (Contributed by NM, 28-Jan-2006.) (New usage is discouraged.) |
⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = 0 ↔ 𝑇 = 0hop ) | ||
Theorem | hoeq1 29244* | A condition implying that two Hilbert space operators are equal. Lemma 3.2(S9) of [Beran] p. 95. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑆‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦) ↔ 𝑆 = 𝑇)) | ||
Theorem | hoeq2 29245* | A condition implying that two Hilbert space operators are equal. Lemma 3.2(S11) of [Beran] p. 95. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ 𝑆 = 𝑇)) | ||
Theorem | adjmo 29246* | Every Hilbert space operator has at most one adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
⊢ ∃*𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) | ||
Theorem | adjsym 29247* | Symmetry property of an adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑆‘𝑥) ·ih 𝑦))) | ||
Theorem | eigrei 29248 | A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for an eigenvalue 𝐵 to be real. Generalization of Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 21-Jan-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ) → ((𝐴 ·ih (𝑇‘𝐴)) = ((𝑇‘𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ)) | ||
Theorem | eigre 29249 | A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for an eigenvalue 𝐵 to be real. Generalization of Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ)) → ((𝐴 ·ih (𝑇‘𝐴)) = ((𝑇‘𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ)) | ||
Theorem | eigposi 29250 | A sufficient condition (first conjunct pair, that holds when 𝑇 is a positive operator) for an eigenvalue 𝐵 (second conjunct pair) to be nonnegative. Remark (ii) in [Hughes] p. 137. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((((𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇‘𝐴))) ∧ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ)) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) | ||
Theorem | eigorthi 29251 | A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for two eigenvectors 𝐴 and 𝐵 to be orthogonal. Generalization of Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Jan-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ ⇒ ⊢ ((((𝑇‘𝐴) = (𝐶 ·ℎ 𝐴) ∧ (𝑇‘𝐵) = (𝐷 ·ℎ 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0)) | ||
Theorem | eigorth 29252 | A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for two eigenvectors 𝐴 and 𝐵 to be orthogonal. Generalization of Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Mar-2006.) (New usage is discouraged.) |
⊢ ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) ∧ (((𝑇‘𝐴) = (𝐶 ·ℎ 𝐴) ∧ (𝑇‘𝐵) = (𝐷 ·ℎ 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷))) → ((𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0)) | ||
Definition | df-nmop 29253* | Define the norm of a Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
⊢ normop = (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ↦ sup({𝑥 ∣ ∃𝑧 ∈ ℋ ((normℎ‘𝑧) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑡‘𝑧)))}, ℝ*, < )) | ||
Definition | df-cnop 29254* | Define the set of continuous operators on Hilbert space. For every "epsilon" (𝑦) there is a "delta" (𝑧) such that... (Contributed by NM, 28-Jan-2006.) (New usage is discouraged.) |
⊢ ContOp = {𝑡 ∈ ( ℋ ↑𝑚 ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) < 𝑦)} | ||
Definition | df-lnop 29255* | Define the set of linear operators on Hilbert space. (See df-hosum 29144 for definition of operator.) (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
⊢ LinOp = {𝑡 ∈ ( ℋ ↑𝑚 ℋ) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑡‘𝑦)) +ℎ (𝑡‘𝑧))} | ||
Definition | df-bdop 29256 | Define the set of bounded linear Hilbert space operators. (See df-hosum 29144 for definition of operator.) (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
⊢ BndLinOp = {𝑡 ∈ LinOp ∣ (normop‘𝑡) < +∞} | ||
Definition | df-unop 29257* | Define the set of unitary operators on Hilbert space. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
⊢ UniOp = {𝑡 ∣ (𝑡: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡‘𝑥) ·ih (𝑡‘𝑦)) = (𝑥 ·ih 𝑦))} | ||
Definition | df-hmop 29258* | Define the set of Hermitian operators on Hilbert space. Some books call these "symmetric operators" and others call them "self-adjoint operators", sometimes with slightly different technical meanings. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
⊢ HrmOp = {𝑡 ∈ ( ℋ ↑𝑚 ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)} | ||
Definition | df-nmfn 29259* | Define the norm of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ normfn = (𝑡 ∈ (ℂ ↑𝑚 ℋ) ↦ sup({𝑥 ∣ ∃𝑧 ∈ ℋ ((normℎ‘𝑧) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑧)))}, ℝ*, < )) | ||
Definition | df-nlfn 29260 | Define the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ null = (𝑡 ∈ (ℂ ↑𝑚 ℋ) ↦ (◡𝑡 “ {0})) | ||
Definition | df-cnfn 29261* | Define the set of continuous functionals on Hilbert space. For every "epsilon" (𝑦) there is a "delta" (𝑧) such that... (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ ContFn = {𝑡 ∈ (ℂ ↑𝑚 ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦)} | ||
Definition | df-lnfn 29262* | Define the set of linear functionals on Hilbert space. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ LinFn = {𝑡 ∈ (ℂ ↑𝑚 ℋ) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧))} | ||
Definition | df-adjh 29263* | Define the adjoint of a Hilbert space operator (if it exists). The domain of adjℎ is the set of all adjoint operators. Definition of adjoint in [Kalmbach2] p. 8. Unlike Kalmbach (and most authors), we do not demand that the operator be linear, but instead show (in adjbdln 29497) that the adjoint exists for a bounded linear operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.) |
⊢ adjℎ = {〈𝑡, 𝑢〉 ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑢‘𝑦)))} | ||
Definition | df-bra 29264* |
Define the bra of a vector used by Dirac notation. Based on definition
of bra in [Prugovecki] p. 186 (p.
180 in 1971 edition). In Dirac
bra-ket notation, 〈𝐴 ∣ 𝐵〉 is a complex number equal to
the inner
product (𝐵 ·ih 𝐴). But physicists like
to talk about the
individual components 〈𝐴 ∣ and ∣
𝐵〉, called bra
and ket
respectively. In order for their properties to make sense formally, we
define the ket ∣ 𝐵〉 as the vector 𝐵 itself,
and the bra
〈𝐴 ∣ as a functional from ℋ to ℂ. We represent the
Dirac notation 〈𝐴 ∣ 𝐵〉 by ((bra‘𝐴)‘𝐵); see
braval 29358. The reversal of the inner product
arguments not only makes
the bra-ket behavior consistent with physics literature (see comments
under ax-his3 28496) but is also required in order for the
associative law
kbass2 29531 to work.
Our definition of bra and the associated outer product df-kb 29265 differs from, but is equivalent to, a common approach in the literature that makes use of mappings to a dual space. Our approach eliminates the need to have a parallel development of this dual space and instead keeps everything in Hilbert space. For an extensive discussion about how our notation maps to the bra-ket notation in physics textbooks, see mmnotes.txt, under the 17-May-2006 entry. (Contributed by NM, 15-May-2006.) (New usage is discouraged.) |
⊢ bra = (𝑥 ∈ ℋ ↦ (𝑦 ∈ ℋ ↦ (𝑦 ·ih 𝑥))) | ||
Definition | df-kb 29265* | Define a commuted bra and ket juxtaposition used by Dirac notation. In Dirac notation, ∣ 𝐴〉 〈𝐵 ∣ is an operator known as the outer product of 𝐴 and 𝐵, which we represent by (𝐴 ketbra 𝐵). Based on Equation 8.1 of [Prugovecki] p. 376. This definition, combined with definition df-bra 29264, allows any legal juxtaposition of bras and kets to make sense formally and also to obey the associative law when mapped back to Dirac notation. (Contributed by NM, 15-May-2006.) (New usage is discouraged.) |
⊢ ketbra = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) ·ℎ 𝑥))) | ||
Definition | df-leop 29266* | Define positive operator ordering. Definition VI.1 of [Retherford] p. 49. Note that ( ℋ × 0ℋ) ≤op 𝑇 means that 𝑇 is a positive operator. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
⊢ ≤op = {〈𝑡, 𝑢〉 ∣ ((𝑢 −op 𝑡) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑡)‘𝑥) ·ih 𝑥))} | ||
Definition | df-eigvec 29267* | Define the eigenvector function. Theorem eleigveccl 29373 shows that eigvec‘𝑇, the set of eigenvectors of Hilbert space operator 𝑇, are Hilbert space vectors. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
⊢ eigvec = (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ↦ {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑧 ∈ ℂ (𝑡‘𝑥) = (𝑧 ·ℎ 𝑥)}) | ||
Definition | df-eigval 29268* | Define the eigenvalue function. The range of eigval‘𝑇 is the set of eigenvalues of Hilbert space operator 𝑇. Theorem eigvalcl 29375 shows that (eigval‘𝑇)‘𝐴, the eigenvalue associated with eigenvector 𝐴, is a complex number. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
⊢ eigval = (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))) | ||
Definition | df-spec 29269* | Define the spectrum of an operator. Definition of spectrum in [Halmos] p. 50. (Contributed by NM, 11-Apr-2006.) (New usage is discouraged.) |
⊢ Lambda = (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ↦ {𝑥 ∈ ℂ ∣ ¬ (𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) | ||
Theorem | nmopval 29270* | Value of the norm of a Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (normop‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < )) | ||
Theorem | elcnop 29271* | Property defining a continuous Hilbert space operator. (Contributed by NM, 28-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇 ∈ ContOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) < 𝑦))) | ||
Theorem | ellnop 29272* | Property defining a linear Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)))) | ||
Theorem | lnopf 29273 | A linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) | ||
Theorem | elbdop 29274 | Property defining a bounded linear Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop‘𝑇) < +∞)) | ||
Theorem | bdopln 29275 | A bounded linear Hilbert space operator is a linear operator. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) | ||
Theorem | bdopf 29276 | A bounded linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ) | ||
Theorem | nmopsetretALT 29277* | The set in the supremum of the operator norm definition df-nmop 29253 is a set of reals. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆ ℝ) | ||
Theorem | nmopsetretHIL 29278* | The set in the supremum of the operator norm definition df-nmop 29253 is a set of reals. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆ ℝ) | ||
Theorem | nmopsetn0 29279* | The set in the supremum of the operator norm definition df-nmop 29253 is nonempty. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
⊢ (normℎ‘(𝑇‘0ℎ)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} | ||
Theorem | nmopxr 29280 | The norm of a Hilbert space operator is an extended real. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (normop‘𝑇) ∈ ℝ*) | ||
Theorem | nmoprepnf 29281 | The norm of a Hilbert space operator is either real or plus infinity. (Contributed by NM, 5-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → ((normop‘𝑇) ∈ ℝ ↔ (normop‘𝑇) ≠ +∞)) | ||
Theorem | nmopgtmnf 29282 | The norm of a Hilbert space operator is not minus infinity. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → -∞ < (normop‘𝑇)) | ||
Theorem | nmopreltpnf 29283 | The norm of a Hilbert space operator is real iff it is less than infinity. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → ((normop‘𝑇) ∈ ℝ ↔ (normop‘𝑇) < +∞)) | ||
Theorem | nmopre 29284 | The norm of a bounded operator is a real number. (Contributed by NM, 29-Jan-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ BndLinOp → (normop‘𝑇) ∈ ℝ) | ||
Theorem | elbdop2 29285 | Property defining a bounded linear Hilbert space operator. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop‘𝑇) ∈ ℝ)) | ||
Theorem | elunop 29286* | Property defining a unitary Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦))) | ||
Theorem | elhmop 29287* | Property defining a Hermitian Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) | ||
Theorem | hmopf 29288 | A Hermitian operator is a Hilbert space operator (mapping). (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) | ||
Theorem | hmopex 29289 | The class of Hermitian operators is a set. (Contributed by NM, 17-Aug-2006.) (New usage is discouraged.) |
⊢ HrmOp ∈ V | ||
Theorem | nmfnval 29290* | Value of the norm of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ℂ → (normfn‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < )) | ||
Theorem | nmfnsetre 29291* | The set in the supremum of the functional norm definition df-nmfn 29259 is a set of reals. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ⊆ ℝ) | ||
Theorem | nmfnsetn0 29292* | The set in the supremum of the functional norm definition df-nmfn 29259 is nonempty. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ (abs‘(𝑇‘0ℎ)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} | ||
Theorem | nmfnxr 29293 | The norm of any Hilbert space functional is an extended real. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ℂ → (normfn‘𝑇) ∈ ℝ*) | ||
Theorem | nmfnrepnf 29294 | The norm of a Hilbert space functional is either real or plus infinity. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ℂ → ((normfn‘𝑇) ∈ ℝ ↔ (normfn‘𝑇) ≠ +∞)) | ||
Theorem | nlfnval 29295 | Value of the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) = (◡𝑇 “ {0})) | ||
Theorem | elcnfn 29296* | Property defining a continuous functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇 ∈ ContFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑇‘𝑤) − (𝑇‘𝑥))) < 𝑦))) | ||
Theorem | ellnfn 29297* | Property defining a linear functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧)))) | ||
Theorem | lnfnf 29298 | A linear Hilbert space functional is a functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinFn → 𝑇: ℋ⟶ℂ) | ||
Theorem | dfadj2 29299* | Alternate definition of the adjoint of a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.) |
⊢ adjℎ = {〈𝑡, 𝑢〉 ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦))} | ||
Theorem | funadj 29300 | Functionality of the adjoint function. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
⊢ Fun adjℎ |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |