Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-pws Structured version   Visualization version   GIF version

Definition df-pws 16718
 Description: Define a structure power, which is just a structure product where all the factors are the same. (Contributed by Mario Carneiro, 11-Jan-2015.)
Assertion
Ref Expression
df-pws s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟})))
Distinct variable group:   𝑖,𝑟

Detailed syntax breakdown of Definition df-pws
StepHypRef Expression
1 cpws 16715 . 2 class s
2 vr . . 3 setvar 𝑟
3 vi . . 3 setvar 𝑖
4 cvv 3441 . . 3 class V
52cv 1537 . . . . 5 class 𝑟
6 csca 16563 . . . . 5 class Scalar
75, 6cfv 6325 . . . 4 class (Scalar‘𝑟)
83cv 1537 . . . . 5 class 𝑖
95csn 4525 . . . . 5 class {𝑟}
108, 9cxp 5518 . . . 4 class (𝑖 × {𝑟})
11 cprds 16714 . . . 4 class Xs
127, 10, 11co 7136 . . 3 class ((Scalar‘𝑟)Xs(𝑖 × {𝑟}))
132, 3, 4, 4, 12cmpo 7138 . 2 class (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟})))
141, 13wceq 1538 1 wff s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟})))
 Colors of variables: wff setvar class This definition is referenced by:  pwsval  16754
 Copyright terms: Public domain W3C validator