MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsval Structured version   Visualization version   GIF version

Theorem pwsval 16751
Description: Value of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsval.y 𝑌 = (𝑅s 𝐼)
pwsval.f 𝐹 = (Scalar‘𝑅)
Assertion
Ref Expression
pwsval ((𝑅𝑉𝐼𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅})))

Proof of Theorem pwsval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsval.y . 2 𝑌 = (𝑅s 𝐼)
2 elex 3459 . . 3 (𝑅𝑉𝑅 ∈ V)
3 elex 3459 . . 3 (𝐼𝑊𝐼 ∈ V)
4 simpl 486 . . . . . . 7 ((𝑟 = 𝑅𝑖 = 𝐼) → 𝑟 = 𝑅)
54fveq2d 6649 . . . . . 6 ((𝑟 = 𝑅𝑖 = 𝐼) → (Scalar‘𝑟) = (Scalar‘𝑅))
6 pwsval.f . . . . . 6 𝐹 = (Scalar‘𝑅)
75, 6eqtr4di 2851 . . . . 5 ((𝑟 = 𝑅𝑖 = 𝐼) → (Scalar‘𝑟) = 𝐹)
8 id 22 . . . . . 6 (𝑖 = 𝐼𝑖 = 𝐼)
9 sneq 4535 . . . . . 6 (𝑟 = 𝑅 → {𝑟} = {𝑅})
10 xpeq12 5544 . . . . . 6 ((𝑖 = 𝐼 ∧ {𝑟} = {𝑅}) → (𝑖 × {𝑟}) = (𝐼 × {𝑅}))
118, 9, 10syl2anr 599 . . . . 5 ((𝑟 = 𝑅𝑖 = 𝐼) → (𝑖 × {𝑟}) = (𝐼 × {𝑅}))
127, 11oveq12d 7153 . . . 4 ((𝑟 = 𝑅𝑖 = 𝐼) → ((Scalar‘𝑟)Xs(𝑖 × {𝑟})) = (𝐹Xs(𝐼 × {𝑅})))
13 df-pws 16715 . . . 4 s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟})))
14 ovex 7168 . . . 4 (𝐹Xs(𝐼 × {𝑅})) ∈ V
1512, 13, 14ovmpoa 7284 . . 3 ((𝑅 ∈ V ∧ 𝐼 ∈ V) → (𝑅s 𝐼) = (𝐹Xs(𝐼 × {𝑅})))
162, 3, 15syl2an 598 . 2 ((𝑅𝑉𝐼𝑊) → (𝑅s 𝐼) = (𝐹Xs(𝐼 × {𝑅})))
171, 16syl5eq 2845 1 ((𝑅𝑉𝐼𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  {csn 4525   × cxp 5517  cfv 6324  (class class class)co 7135  Scalarcsca 16560  Xscprds 16711  s cpws 16712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-pws 16715
This theorem is referenced by:  pwsbas  16752  pwsplusgval  16755  pwsmulrval  16756  pwsle  16757  pwsvscafval  16759  pwssca  16761  pwsmnd  17938  pws0g  17939  pwspjmhm  17986  pwsgrp  18203  pwsinvg  18204  pwscmn  18976  pwsabl  18977  pwsgsum  19095  pwsring  19361  pws1  19362  pwscrng  19363  pwsmgp  19364  pwslmod  19735  frlmpws  20439  frlmlss  20440  frlmpwsfi  20441  frlmbas  20444  frlmip  20467  pwstps  22235  resspwsds  22979  pwsxms  23139  pwsms  23140  rrxprds  23993  cnpwstotbnd  35235  repwsmet  35272  rrnequiv  35273
  Copyright terms: Public domain W3C validator