| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwsval | Structured version Visualization version GIF version | ||
| Description: Value of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| pwsval.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pwsval.f | ⊢ 𝐹 = (Scalar‘𝑅) |
| Ref | Expression |
|---|---|
| pwsval | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsval.y | . 2 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 2 | elex 3458 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 3 | elex 3458 | . . 3 ⊢ (𝐼 ∈ 𝑊 → 𝐼 ∈ V) | |
| 4 | simpl 482 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → 𝑟 = 𝑅) | |
| 5 | 4 | fveq2d 6832 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → (Scalar‘𝑟) = (Scalar‘𝑅)) |
| 6 | pwsval.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑅) | |
| 7 | 5, 6 | eqtr4di 2786 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → (Scalar‘𝑟) = 𝐹) |
| 8 | id 22 | . . . . . 6 ⊢ (𝑖 = 𝐼 → 𝑖 = 𝐼) | |
| 9 | sneq 4585 | . . . . . 6 ⊢ (𝑟 = 𝑅 → {𝑟} = {𝑅}) | |
| 10 | xpeq12 5644 | . . . . . 6 ⊢ ((𝑖 = 𝐼 ∧ {𝑟} = {𝑅}) → (𝑖 × {𝑟}) = (𝐼 × {𝑅})) | |
| 11 | 8, 9, 10 | syl2anr 597 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → (𝑖 × {𝑟}) = (𝐼 × {𝑅})) |
| 12 | 7, 11 | oveq12d 7370 | . . . 4 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → ((Scalar‘𝑟)Xs(𝑖 × {𝑟})) = (𝐹Xs(𝐼 × {𝑅}))) |
| 13 | df-pws 17355 | . . . 4 ⊢ ↑s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟}))) | |
| 14 | ovex 7385 | . . . 4 ⊢ (𝐹Xs(𝐼 × {𝑅})) ∈ V | |
| 15 | 12, 13, 14 | ovmpoa 7507 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝐼 ∈ V) → (𝑅 ↑s 𝐼) = (𝐹Xs(𝐼 × {𝑅}))) |
| 16 | 2, 3, 15 | syl2an 596 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝑅 ↑s 𝐼) = (𝐹Xs(𝐼 × {𝑅}))) |
| 17 | 1, 16 | eqtrid 2780 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 {csn 4575 × cxp 5617 ‘cfv 6486 (class class class)co 7352 Scalarcsca 17166 Xscprds 17351 ↑s cpws 17352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-pws 17355 |
| This theorem is referenced by: pwsbas 17393 pwsplusgval 17396 pwsmulrval 17397 pwsle 17398 pwsvscafval 17400 pwssca 17402 pwsmnd 18682 pws0g 18683 pwspjmhm 18740 pwsgrp 18967 pwsinvg 18968 pwscmn 19777 pwsabl 19778 pwsgsum 19896 pwsring 20244 pws1 20245 pwscrng 20246 pwsmgp 20247 pwslmod 20905 frlmpws 21689 frlmlss 21690 frlmpwsfi 21691 frlmbas 21694 frlmip 21717 pwstps 23546 resspwsds 24288 pwsxms 24448 pwsms 24449 rrxprds 25317 cnpwstotbnd 37857 repwsmet 37894 rrnequiv 37895 |
| Copyright terms: Public domain | W3C validator |