Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwsval | Structured version Visualization version GIF version |
Description: Value of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
Ref | Expression |
---|---|
pwsval.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
pwsval.f | ⊢ 𝐹 = (Scalar‘𝑅) |
Ref | Expression |
---|---|
pwsval | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwsval.y | . 2 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
2 | elex 3450 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
3 | elex 3450 | . . 3 ⊢ (𝐼 ∈ 𝑊 → 𝐼 ∈ V) | |
4 | simpl 483 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → 𝑟 = 𝑅) | |
5 | 4 | fveq2d 6778 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → (Scalar‘𝑟) = (Scalar‘𝑅)) |
6 | pwsval.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑅) | |
7 | 5, 6 | eqtr4di 2796 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → (Scalar‘𝑟) = 𝐹) |
8 | id 22 | . . . . . 6 ⊢ (𝑖 = 𝐼 → 𝑖 = 𝐼) | |
9 | sneq 4571 | . . . . . 6 ⊢ (𝑟 = 𝑅 → {𝑟} = {𝑅}) | |
10 | xpeq12 5614 | . . . . . 6 ⊢ ((𝑖 = 𝐼 ∧ {𝑟} = {𝑅}) → (𝑖 × {𝑟}) = (𝐼 × {𝑅})) | |
11 | 8, 9, 10 | syl2anr 597 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → (𝑖 × {𝑟}) = (𝐼 × {𝑅})) |
12 | 7, 11 | oveq12d 7293 | . . . 4 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → ((Scalar‘𝑟)Xs(𝑖 × {𝑟})) = (𝐹Xs(𝐼 × {𝑅}))) |
13 | df-pws 17160 | . . . 4 ⊢ ↑s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟}))) | |
14 | ovex 7308 | . . . 4 ⊢ (𝐹Xs(𝐼 × {𝑅})) ∈ V | |
15 | 12, 13, 14 | ovmpoa 7428 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝐼 ∈ V) → (𝑅 ↑s 𝐼) = (𝐹Xs(𝐼 × {𝑅}))) |
16 | 2, 3, 15 | syl2an 596 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝑅 ↑s 𝐼) = (𝐹Xs(𝐼 × {𝑅}))) |
17 | 1, 16 | eqtrid 2790 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 × cxp 5587 ‘cfv 6433 (class class class)co 7275 Scalarcsca 16965 Xscprds 17156 ↑s cpws 17157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-pws 17160 |
This theorem is referenced by: pwsbas 17198 pwsplusgval 17201 pwsmulrval 17202 pwsle 17203 pwsvscafval 17205 pwssca 17207 pwsmnd 18420 pws0g 18421 pwspjmhm 18468 pwsgrp 18687 pwsinvg 18688 pwscmn 19464 pwsabl 19465 pwsgsum 19583 pwsring 19854 pws1 19855 pwscrng 19856 pwsmgp 19857 pwslmod 20232 frlmpws 20957 frlmlss 20958 frlmpwsfi 20959 frlmbas 20962 frlmip 20985 pwstps 22781 resspwsds 23525 pwsxms 23688 pwsms 23689 rrxprds 24553 cnpwstotbnd 35955 repwsmet 35992 rrnequiv 35993 |
Copyright terms: Public domain | W3C validator |