| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwsval | Structured version Visualization version GIF version | ||
| Description: Value of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| pwsval.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pwsval.f | ⊢ 𝐹 = (Scalar‘𝑅) |
| Ref | Expression |
|---|---|
| pwsval | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsval.y | . 2 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 2 | elex 3471 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 3 | elex 3471 | . . 3 ⊢ (𝐼 ∈ 𝑊 → 𝐼 ∈ V) | |
| 4 | simpl 482 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → 𝑟 = 𝑅) | |
| 5 | 4 | fveq2d 6865 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → (Scalar‘𝑟) = (Scalar‘𝑅)) |
| 6 | pwsval.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑅) | |
| 7 | 5, 6 | eqtr4di 2783 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → (Scalar‘𝑟) = 𝐹) |
| 8 | id 22 | . . . . . 6 ⊢ (𝑖 = 𝐼 → 𝑖 = 𝐼) | |
| 9 | sneq 4602 | . . . . . 6 ⊢ (𝑟 = 𝑅 → {𝑟} = {𝑅}) | |
| 10 | xpeq12 5666 | . . . . . 6 ⊢ ((𝑖 = 𝐼 ∧ {𝑟} = {𝑅}) → (𝑖 × {𝑟}) = (𝐼 × {𝑅})) | |
| 11 | 8, 9, 10 | syl2anr 597 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → (𝑖 × {𝑟}) = (𝐼 × {𝑅})) |
| 12 | 7, 11 | oveq12d 7408 | . . . 4 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → ((Scalar‘𝑟)Xs(𝑖 × {𝑟})) = (𝐹Xs(𝐼 × {𝑅}))) |
| 13 | df-pws 17419 | . . . 4 ⊢ ↑s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟}))) | |
| 14 | ovex 7423 | . . . 4 ⊢ (𝐹Xs(𝐼 × {𝑅})) ∈ V | |
| 15 | 12, 13, 14 | ovmpoa 7547 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝐼 ∈ V) → (𝑅 ↑s 𝐼) = (𝐹Xs(𝐼 × {𝑅}))) |
| 16 | 2, 3, 15 | syl2an 596 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝑅 ↑s 𝐼) = (𝐹Xs(𝐼 × {𝑅}))) |
| 17 | 1, 16 | eqtrid 2777 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4592 × cxp 5639 ‘cfv 6514 (class class class)co 7390 Scalarcsca 17230 Xscprds 17415 ↑s cpws 17416 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-pws 17419 |
| This theorem is referenced by: pwsbas 17457 pwsplusgval 17460 pwsmulrval 17461 pwsle 17462 pwsvscafval 17464 pwssca 17466 pwsmnd 18706 pws0g 18707 pwspjmhm 18764 pwsgrp 18991 pwsinvg 18992 pwscmn 19800 pwsabl 19801 pwsgsum 19919 pwsring 20240 pws1 20241 pwscrng 20242 pwsmgp 20243 pwslmod 20883 frlmpws 21666 frlmlss 21667 frlmpwsfi 21668 frlmbas 21671 frlmip 21694 pwstps 23524 resspwsds 24267 pwsxms 24427 pwsms 24428 rrxprds 25296 cnpwstotbnd 37798 repwsmet 37835 rrnequiv 37836 |
| Copyright terms: Public domain | W3C validator |