![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwsval | Structured version Visualization version GIF version |
Description: Value of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
Ref | Expression |
---|---|
pwsval.y | β’ π = (π βs πΌ) |
pwsval.f | β’ πΉ = (Scalarβπ ) |
Ref | Expression |
---|---|
pwsval | β’ ((π β π β§ πΌ β π) β π = (πΉXs(πΌ Γ {π }))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwsval.y | . 2 β’ π = (π βs πΌ) | |
2 | elex 3492 | . . 3 β’ (π β π β π β V) | |
3 | elex 3492 | . . 3 β’ (πΌ β π β πΌ β V) | |
4 | simpl 483 | . . . . . . 7 β’ ((π = π β§ π = πΌ) β π = π ) | |
5 | 4 | fveq2d 6892 | . . . . . 6 β’ ((π = π β§ π = πΌ) β (Scalarβπ) = (Scalarβπ )) |
6 | pwsval.f | . . . . . 6 β’ πΉ = (Scalarβπ ) | |
7 | 5, 6 | eqtr4di 2790 | . . . . 5 β’ ((π = π β§ π = πΌ) β (Scalarβπ) = πΉ) |
8 | id 22 | . . . . . 6 β’ (π = πΌ β π = πΌ) | |
9 | sneq 4637 | . . . . . 6 β’ (π = π β {π} = {π }) | |
10 | xpeq12 5700 | . . . . . 6 β’ ((π = πΌ β§ {π} = {π }) β (π Γ {π}) = (πΌ Γ {π })) | |
11 | 8, 9, 10 | syl2anr 597 | . . . . 5 β’ ((π = π β§ π = πΌ) β (π Γ {π}) = (πΌ Γ {π })) |
12 | 7, 11 | oveq12d 7423 | . . . 4 β’ ((π = π β§ π = πΌ) β ((Scalarβπ)Xs(π Γ {π})) = (πΉXs(πΌ Γ {π }))) |
13 | df-pws 17391 | . . . 4 β’ βs = (π β V, π β V β¦ ((Scalarβπ)Xs(π Γ {π}))) | |
14 | ovex 7438 | . . . 4 β’ (πΉXs(πΌ Γ {π })) β V | |
15 | 12, 13, 14 | ovmpoa 7559 | . . 3 β’ ((π β V β§ πΌ β V) β (π βs πΌ) = (πΉXs(πΌ Γ {π }))) |
16 | 2, 3, 15 | syl2an 596 | . 2 β’ ((π β π β§ πΌ β π) β (π βs πΌ) = (πΉXs(πΌ Γ {π }))) |
17 | 1, 16 | eqtrid 2784 | 1 β’ ((π β π β§ πΌ β π) β π = (πΉXs(πΌ Γ {π }))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 {csn 4627 Γ cxp 5673 βcfv 6540 (class class class)co 7405 Scalarcsca 17196 Xscprds 17387 βs cpws 17388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-pws 17391 |
This theorem is referenced by: pwsbas 17429 pwsplusgval 17432 pwsmulrval 17433 pwsle 17434 pwsvscafval 17436 pwssca 17438 pwsmnd 18656 pws0g 18657 pwspjmhm 18707 pwsgrp 18931 pwsinvg 18932 pwscmn 19725 pwsabl 19726 pwsgsum 19844 pwsring 20130 pws1 20131 pwscrng 20132 pwsmgp 20133 pwslmod 20573 frlmpws 21296 frlmlss 21297 frlmpwsfi 21298 frlmbas 21301 frlmip 21324 pwstps 23125 resspwsds 23869 pwsxms 24032 pwsms 24033 rrxprds 24897 cnpwstotbnd 36653 repwsmet 36690 rrnequiv 36691 |
Copyright terms: Public domain | W3C validator |