![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwsval | Structured version Visualization version GIF version |
Description: Value of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
Ref | Expression |
---|---|
pwsval.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
pwsval.f | ⊢ 𝐹 = (Scalar‘𝑅) |
Ref | Expression |
---|---|
pwsval | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwsval.y | . 2 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
2 | elex 3509 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
3 | elex 3509 | . . 3 ⊢ (𝐼 ∈ 𝑊 → 𝐼 ∈ V) | |
4 | simpl 482 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → 𝑟 = 𝑅) | |
5 | 4 | fveq2d 6924 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → (Scalar‘𝑟) = (Scalar‘𝑅)) |
6 | pwsval.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑅) | |
7 | 5, 6 | eqtr4di 2798 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → (Scalar‘𝑟) = 𝐹) |
8 | id 22 | . . . . . 6 ⊢ (𝑖 = 𝐼 → 𝑖 = 𝐼) | |
9 | sneq 4658 | . . . . . 6 ⊢ (𝑟 = 𝑅 → {𝑟} = {𝑅}) | |
10 | xpeq12 5725 | . . . . . 6 ⊢ ((𝑖 = 𝐼 ∧ {𝑟} = {𝑅}) → (𝑖 × {𝑟}) = (𝐼 × {𝑅})) | |
11 | 8, 9, 10 | syl2anr 596 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → (𝑖 × {𝑟}) = (𝐼 × {𝑅})) |
12 | 7, 11 | oveq12d 7466 | . . . 4 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → ((Scalar‘𝑟)Xs(𝑖 × {𝑟})) = (𝐹Xs(𝐼 × {𝑅}))) |
13 | df-pws 17509 | . . . 4 ⊢ ↑s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟}))) | |
14 | ovex 7481 | . . . 4 ⊢ (𝐹Xs(𝐼 × {𝑅})) ∈ V | |
15 | 12, 13, 14 | ovmpoa 7605 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝐼 ∈ V) → (𝑅 ↑s 𝐼) = (𝐹Xs(𝐼 × {𝑅}))) |
16 | 2, 3, 15 | syl2an 595 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝑅 ↑s 𝐼) = (𝐹Xs(𝐼 × {𝑅}))) |
17 | 1, 16 | eqtrid 2792 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 × cxp 5698 ‘cfv 6573 (class class class)co 7448 Scalarcsca 17314 Xscprds 17505 ↑s cpws 17506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-pws 17509 |
This theorem is referenced by: pwsbas 17547 pwsplusgval 17550 pwsmulrval 17551 pwsle 17552 pwsvscafval 17554 pwssca 17556 pwsmnd 18807 pws0g 18808 pwspjmhm 18865 pwsgrp 19092 pwsinvg 19093 pwscmn 19905 pwsabl 19906 pwsgsum 20024 pwsring 20347 pws1 20348 pwscrng 20349 pwsmgp 20350 pwslmod 20991 frlmpws 21793 frlmlss 21794 frlmpwsfi 21795 frlmbas 21798 frlmip 21821 pwstps 23659 resspwsds 24403 pwsxms 24566 pwsms 24567 rrxprds 25442 cnpwstotbnd 37757 repwsmet 37794 rrnequiv 37795 |
Copyright terms: Public domain | W3C validator |