MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsval Structured version   Visualization version   GIF version

Theorem pwsval 17408
Description: Value of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsval.y 𝑌 = (𝑅s 𝐼)
pwsval.f 𝐹 = (Scalar‘𝑅)
Assertion
Ref Expression
pwsval ((𝑅𝑉𝐼𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅})))

Proof of Theorem pwsval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsval.y . 2 𝑌 = (𝑅s 𝐼)
2 elex 3459 . . 3 (𝑅𝑉𝑅 ∈ V)
3 elex 3459 . . 3 (𝐼𝑊𝐼 ∈ V)
4 simpl 482 . . . . . . 7 ((𝑟 = 𝑅𝑖 = 𝐼) → 𝑟 = 𝑅)
54fveq2d 6830 . . . . . 6 ((𝑟 = 𝑅𝑖 = 𝐼) → (Scalar‘𝑟) = (Scalar‘𝑅))
6 pwsval.f . . . . . 6 𝐹 = (Scalar‘𝑅)
75, 6eqtr4di 2782 . . . . 5 ((𝑟 = 𝑅𝑖 = 𝐼) → (Scalar‘𝑟) = 𝐹)
8 id 22 . . . . . 6 (𝑖 = 𝐼𝑖 = 𝐼)
9 sneq 4589 . . . . . 6 (𝑟 = 𝑅 → {𝑟} = {𝑅})
10 xpeq12 5648 . . . . . 6 ((𝑖 = 𝐼 ∧ {𝑟} = {𝑅}) → (𝑖 × {𝑟}) = (𝐼 × {𝑅}))
118, 9, 10syl2anr 597 . . . . 5 ((𝑟 = 𝑅𝑖 = 𝐼) → (𝑖 × {𝑟}) = (𝐼 × {𝑅}))
127, 11oveq12d 7371 . . . 4 ((𝑟 = 𝑅𝑖 = 𝐼) → ((Scalar‘𝑟)Xs(𝑖 × {𝑟})) = (𝐹Xs(𝐼 × {𝑅})))
13 df-pws 17371 . . . 4 s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟})))
14 ovex 7386 . . . 4 (𝐹Xs(𝐼 × {𝑅})) ∈ V
1512, 13, 14ovmpoa 7508 . . 3 ((𝑅 ∈ V ∧ 𝐼 ∈ V) → (𝑅s 𝐼) = (𝐹Xs(𝐼 × {𝑅})))
162, 3, 15syl2an 596 . 2 ((𝑅𝑉𝐼𝑊) → (𝑅s 𝐼) = (𝐹Xs(𝐼 × {𝑅})))
171, 16eqtrid 2776 1 ((𝑅𝑉𝐼𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  {csn 4579   × cxp 5621  cfv 6486  (class class class)co 7353  Scalarcsca 17182  Xscprds 17367  s cpws 17368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-pws 17371
This theorem is referenced by:  pwsbas  17409  pwsplusgval  17412  pwsmulrval  17413  pwsle  17414  pwsvscafval  17416  pwssca  17418  pwsmnd  18664  pws0g  18665  pwspjmhm  18722  pwsgrp  18949  pwsinvg  18950  pwscmn  19760  pwsabl  19761  pwsgsum  19879  pwsring  20227  pws1  20228  pwscrng  20229  pwsmgp  20230  pwslmod  20891  frlmpws  21675  frlmlss  21676  frlmpwsfi  21677  frlmbas  21680  frlmip  21703  pwstps  23533  resspwsds  24276  pwsxms  24436  pwsms  24437  rrxprds  25305  cnpwstotbnd  37776  repwsmet  37813  rrnequiv  37814
  Copyright terms: Public domain W3C validator