| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwsval | Structured version Visualization version GIF version | ||
| Description: Value of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| pwsval.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pwsval.f | ⊢ 𝐹 = (Scalar‘𝑅) |
| Ref | Expression |
|---|---|
| pwsval | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsval.y | . 2 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 2 | elex 3457 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 3 | elex 3457 | . . 3 ⊢ (𝐼 ∈ 𝑊 → 𝐼 ∈ V) | |
| 4 | simpl 482 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → 𝑟 = 𝑅) | |
| 5 | 4 | fveq2d 6826 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → (Scalar‘𝑟) = (Scalar‘𝑅)) |
| 6 | pwsval.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑅) | |
| 7 | 5, 6 | eqtr4di 2784 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → (Scalar‘𝑟) = 𝐹) |
| 8 | id 22 | . . . . . 6 ⊢ (𝑖 = 𝐼 → 𝑖 = 𝐼) | |
| 9 | sneq 4586 | . . . . . 6 ⊢ (𝑟 = 𝑅 → {𝑟} = {𝑅}) | |
| 10 | xpeq12 5641 | . . . . . 6 ⊢ ((𝑖 = 𝐼 ∧ {𝑟} = {𝑅}) → (𝑖 × {𝑟}) = (𝐼 × {𝑅})) | |
| 11 | 8, 9, 10 | syl2anr 597 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → (𝑖 × {𝑟}) = (𝐼 × {𝑅})) |
| 12 | 7, 11 | oveq12d 7364 | . . . 4 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → ((Scalar‘𝑟)Xs(𝑖 × {𝑟})) = (𝐹Xs(𝐼 × {𝑅}))) |
| 13 | df-pws 17350 | . . . 4 ⊢ ↑s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟}))) | |
| 14 | ovex 7379 | . . . 4 ⊢ (𝐹Xs(𝐼 × {𝑅})) ∈ V | |
| 15 | 12, 13, 14 | ovmpoa 7501 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝐼 ∈ V) → (𝑅 ↑s 𝐼) = (𝐹Xs(𝐼 × {𝑅}))) |
| 16 | 2, 3, 15 | syl2an 596 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝑅 ↑s 𝐼) = (𝐹Xs(𝐼 × {𝑅}))) |
| 17 | 1, 16 | eqtrid 2778 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4576 × cxp 5614 ‘cfv 6481 (class class class)co 7346 Scalarcsca 17161 Xscprds 17346 ↑s cpws 17347 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-pws 17350 |
| This theorem is referenced by: pwsbas 17388 pwsplusgval 17391 pwsmulrval 17392 pwsle 17393 pwsvscafval 17395 pwssca 17397 pwsmnd 18677 pws0g 18678 pwspjmhm 18735 pwsgrp 18962 pwsinvg 18963 pwscmn 19773 pwsabl 19774 pwsgsum 19892 pwsring 20240 pws1 20241 pwscrng 20242 pwsmgp 20243 pwslmod 20901 frlmpws 21685 frlmlss 21686 frlmpwsfi 21687 frlmbas 21690 frlmip 21713 pwstps 23543 resspwsds 24285 pwsxms 24445 pwsms 24446 rrxprds 25314 cnpwstotbnd 37836 repwsmet 37873 rrnequiv 37874 |
| Copyright terms: Public domain | W3C validator |