MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmprds Structured version   Visualization version   GIF version

Theorem reldmprds 17394
Description: The structure product is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
Assertion
Ref Expression
reldmprds Rel dom Xs

Proof of Theorem reldmprds
Dummy variables π‘Ž 𝑐 𝑑 𝑒 𝑓 𝑔 β„Ž 𝑠 π‘Ÿ π‘₯ 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-prds 17393 . 2 Xs = (𝑠 ∈ V, π‘Ÿ ∈ V ↦ ⦋Xπ‘₯ ∈ dom π‘Ÿ(Baseβ€˜(π‘Ÿβ€˜π‘₯)) / π‘£β¦Œβ¦‹(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ Xπ‘₯ ∈ dom π‘Ÿ((π‘“β€˜π‘₯)(Hom β€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯))) / β„Žβ¦Œ(({⟨(Baseβ€˜ndx), π‘£βŸ©, ⟨(+gβ€˜ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (π‘₯ ∈ dom π‘Ÿ ↦ ((π‘“β€˜π‘₯)(+gβ€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯))))⟩, ⟨(.rβ€˜ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (π‘₯ ∈ dom π‘Ÿ ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯))))⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘ βŸ©, ⟨( ·𝑠 β€˜ndx), (𝑓 ∈ (Baseβ€˜π‘ ), 𝑔 ∈ 𝑣 ↦ (π‘₯ ∈ dom π‘Ÿ ↦ (𝑓( ·𝑠 β€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯))))⟩, ⟨(Β·π‘–β€˜ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Ξ£g (π‘₯ ∈ dom π‘Ÿ ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯)))))⟩}) βˆͺ ({⟨(TopSetβ€˜ndx), (∏tβ€˜(TopOpen ∘ π‘Ÿ))⟩, ⟨(leβ€˜ndx), {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝑣 ∧ βˆ€π‘₯ ∈ dom π‘Ÿ(π‘“β€˜π‘₯)(leβ€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯))}⟩, ⟨(distβ€˜ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (π‘₯ ∈ dom π‘Ÿ ↦ ((π‘“β€˜π‘₯)(distβ€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯))) βˆͺ {0}), ℝ*, < ))⟩} βˆͺ {⟨(Hom β€˜ndx), β„ŽβŸ©, ⟨(compβ€˜ndx), (π‘Ž ∈ (𝑣 Γ— 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)β„Žπ‘), 𝑒 ∈ (β„Žβ€˜π‘Ž) ↦ (π‘₯ ∈ dom π‘Ÿ ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘Ÿβ€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯)))))⟩})))
21reldmmpo 7543 1 Rel dom Xs
Colors of variables: wff setvar class
Syntax hints:   ∧ wa 397  βˆ€wral 3062  Vcvv 3475  β¦‹csb 3894   βˆͺ cun 3947   βŠ† wss 3949  {csn 4629  {cpr 4631  {ctp 4633  βŸ¨cop 4635   class class class wbr 5149  {copab 5211   ↦ cmpt 5232   Γ— cxp 5675  dom cdm 5677  ran crn 5678   ∘ ccom 5681  Rel wrel 5682  β€˜cfv 6544  (class class class)co 7409   ∈ cmpo 7411  1st c1st 7973  2nd c2nd 7974  Xcixp 8891  supcsup 9435  0cc0 11110  β„*cxr 11247   < clt 11248  ndxcnx 17126  Basecbs 17144  +gcplusg 17197  .rcmulr 17198  Scalarcsca 17200   ·𝑠 cvsca 17201  Β·π‘–cip 17202  TopSetcts 17203  lecple 17204  distcds 17206  Hom chom 17208  compcco 17209  TopOpenctopn 17367  βˆtcpt 17384   Ξ£g cgsu 17386  Xscprds 17391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-dm 5687  df-oprab 7413  df-mpo 7414  df-prds 17393
This theorem is referenced by:  dsmmval  21289  dsmmval2  21291  dsmmbas2  21292  dsmmfi  21293
  Copyright terms: Public domain W3C validator