| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmprds | Structured version Visualization version GIF version | ||
| Description: The structure product is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
| Ref | Expression |
|---|---|
| reldmprds | ⊢ Rel dom Xs |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-prds 17410 | . 2 ⊢ Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ ⦋X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) / 𝑣⦌⦋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⦌(({〈(Base‘ndx), 𝑣〉, 〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx), 𝑠〉, 〈( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉}))) | |
| 2 | 1 | reldmmpo 7523 | 1 ⊢ Rel dom Xs |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∀wral 3044 Vcvv 3447 ⦋csb 3862 ∪ cun 3912 ⊆ wss 3914 {csn 4589 {cpr 4591 {ctp 4593 〈cop 4595 class class class wbr 5107 {copab 5169 ↦ cmpt 5188 × cxp 5636 dom cdm 5638 ran crn 5639 ∘ ccom 5642 Rel wrel 5643 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 1st c1st 7966 2nd c2nd 7967 Xcixp 8870 supcsup 9391 0cc0 11068 ℝ*cxr 11207 < clt 11208 ndxcnx 17163 Basecbs 17179 +gcplusg 17220 .rcmulr 17221 Scalarcsca 17223 ·𝑠 cvsca 17224 ·𝑖cip 17225 TopSetcts 17226 lecple 17227 distcds 17229 Hom chom 17231 compcco 17232 TopOpenctopn 17384 ∏tcpt 17401 Σg cgsu 17403 Xscprds 17408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-dm 5648 df-oprab 7391 df-mpo 7392 df-prds 17410 |
| This theorem is referenced by: dsmmval 21643 dsmmval2 21645 dsmmbas2 21646 dsmmfi 21647 |
| Copyright terms: Public domain | W3C validator |