MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmprds Structured version   Visualization version   GIF version

Theorem reldmprds 16469
Description: The structure product is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.)
Assertion
Ref Expression
reldmprds Rel dom Xs

Proof of Theorem reldmprds
Dummy variables 𝑎 𝑐 𝑑 𝑒 𝑓 𝑔 𝑠 𝑟 𝑥 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-prds 16468 . 2 Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ (𝑐(2nd𝑎)), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
21reldmmpt2 7036 1 Rel dom Xs
Colors of variables: wff setvar class
Syntax hints:  wa 386  wral 3117  Vcvv 3414  csb 3757  cun 3796  wss 3798  {csn 4399  {cpr 4401  {ctp 4403  cop 4405   class class class wbr 4875  {copab 4937  cmpt 4954   × cxp 5344  dom cdm 5346  ran crn 5347  ccom 5350  Rel wrel 5351  cfv 6127  (class class class)co 6910  cmpt2 6912  1st c1st 7431  2nd c2nd 7432  Xcixp 8181  supcsup 8621  0cc0 10259  *cxr 10397   < clt 10398  ndxcnx 16226  Basecbs 16229  +gcplusg 16312  .rcmulr 16313  Scalarcsca 16315   ·𝑠 cvsca 16316  ·𝑖cip 16317  TopSetcts 16318  lecple 16319  distcds 16321  Hom chom 16323  compcco 16324  TopOpenctopn 16442  tcpt 16459   Σg cgsu 16461  Xscprds 16466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pr 5129
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-rab 3126  df-v 3416  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-br 4876  df-opab 4938  df-xp 5352  df-rel 5353  df-dm 5356  df-oprab 6914  df-mpt2 6915  df-prds 16468
This theorem is referenced by:  dsmmval  20448  dsmmval2  20450  dsmmbas2  20451  dsmmfi  20452
  Copyright terms: Public domain W3C validator