MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsbasex Structured version   Visualization version   GIF version

Theorem prdsbasex 17432
Description: Lemma for structure products. (Contributed by Mario Carneiro, 3-Jan-2015.)
Hypothesis
Ref Expression
prdsbasex.b 𝐵 = X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))
Assertion
Ref Expression
prdsbasex 𝐵 ∈ V
Distinct variable group:   𝑥,𝑅
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem prdsbasex
StepHypRef Expression
1 prdsbasex.b . 2 𝐵 = X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))
2 ixpexg 8941 . . 3 (∀𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V → X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V)
3 fvexd 6912 . . 3 (𝑥 ∈ dom 𝑅 → (Base‘(𝑅𝑥)) ∈ V)
42, 3mprg 3064 . 2 X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V
51, 4eqeltri 2825 1 𝐵 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  Vcvv 3471  dom cdm 5678  cfv 6548  Xcixp 8916  Basecbs 17180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-fv 6556  df-ixp 8917
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator