MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsbasex Structured version   Visualization version   GIF version

Theorem prdsbasex 17466
Description: Lemma for structure products. (Contributed by Mario Carneiro, 3-Jan-2015.)
Hypothesis
Ref Expression
prdsbasex.b 𝐵 = X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))
Assertion
Ref Expression
prdsbasex 𝐵 ∈ V
Distinct variable group:   𝑥,𝑅
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem prdsbasex
StepHypRef Expression
1 prdsbasex.b . 2 𝐵 = X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥))
2 ixpexg 8944 . . 3 (∀𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V → X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V)
3 fvexd 6901 . . 3 (𝑥 ∈ dom 𝑅 → (Base‘(𝑅𝑥)) ∈ V)
42, 3mprg 3056 . 2 X𝑥 ∈ dom 𝑅(Base‘(𝑅𝑥)) ∈ V
51, 4eqeltri 2829 1 𝐵 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  Vcvv 3463  dom cdm 5665  cfv 6541  Xcixp 8919  Basecbs 17229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549  df-ixp 8920
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator