Detailed syntax breakdown of Definition df-qtop
Step | Hyp | Ref
| Expression |
1 | | cqtop 17195 |
. 2
class
qTop |
2 | | vj |
. . 3
setvar 𝑗 |
3 | | vf |
. . 3
setvar 𝑓 |
4 | | cvv 3430 |
. . 3
class
V |
5 | 3 | cv 1540 |
. . . . . . . 8
class 𝑓 |
6 | 5 | ccnv 5587 |
. . . . . . 7
class ◡𝑓 |
7 | | vs |
. . . . . . . 8
setvar 𝑠 |
8 | 7 | cv 1540 |
. . . . . . 7
class 𝑠 |
9 | 6, 8 | cima 5591 |
. . . . . 6
class (◡𝑓 “ 𝑠) |
10 | 2 | cv 1540 |
. . . . . . 7
class 𝑗 |
11 | 10 | cuni 4844 |
. . . . . 6
class ∪ 𝑗 |
12 | 9, 11 | cin 3890 |
. . . . 5
class ((◡𝑓 “ 𝑠) ∩ ∪ 𝑗) |
13 | 12, 10 | wcel 2109 |
. . . 4
wff ((◡𝑓 “ 𝑠) ∩ ∪ 𝑗) ∈ 𝑗 |
14 | 5, 11 | cima 5591 |
. . . . 5
class (𝑓 “ ∪ 𝑗) |
15 | 14 | cpw 4538 |
. . . 4
class 𝒫
(𝑓 “ ∪ 𝑗) |
16 | 13, 7, 15 | crab 3069 |
. . 3
class {𝑠 ∈ 𝒫 (𝑓 “ ∪ 𝑗)
∣ ((◡𝑓 “ 𝑠) ∩ ∪ 𝑗) ∈ 𝑗} |
17 | 2, 3, 4, 4, 16 | cmpo 7270 |
. 2
class (𝑗 ∈ V, 𝑓 ∈ V ↦ {𝑠 ∈ 𝒫 (𝑓 “ ∪ 𝑗) ∣ ((◡𝑓 “ 𝑠) ∩ ∪ 𝑗) ∈ 𝑗}) |
18 | 1, 17 | wceq 1541 |
1
wff qTop =
(𝑗 ∈ V, 𝑓 ∈ V ↦ {𝑠 ∈ 𝒫 (𝑓 “ ∪ 𝑗)
∣ ((◡𝑓 “ 𝑠) ∩ ∪ 𝑗) ∈ 𝑗}) |