Detailed syntax breakdown of Definition df-qtop
| Step | Hyp | Ref
| Expression |
| 1 | | cqtop 17548 |
. 2
class
qTop |
| 2 | | vj |
. . 3
setvar 𝑗 |
| 3 | | vf |
. . 3
setvar 𝑓 |
| 4 | | cvv 3480 |
. . 3
class
V |
| 5 | 3 | cv 1539 |
. . . . . . . 8
class 𝑓 |
| 6 | 5 | ccnv 5684 |
. . . . . . 7
class ◡𝑓 |
| 7 | | vs |
. . . . . . . 8
setvar 𝑠 |
| 8 | 7 | cv 1539 |
. . . . . . 7
class 𝑠 |
| 9 | 6, 8 | cima 5688 |
. . . . . 6
class (◡𝑓 “ 𝑠) |
| 10 | 2 | cv 1539 |
. . . . . . 7
class 𝑗 |
| 11 | 10 | cuni 4907 |
. . . . . 6
class ∪ 𝑗 |
| 12 | 9, 11 | cin 3950 |
. . . . 5
class ((◡𝑓 “ 𝑠) ∩ ∪ 𝑗) |
| 13 | 12, 10 | wcel 2108 |
. . . 4
wff ((◡𝑓 “ 𝑠) ∩ ∪ 𝑗) ∈ 𝑗 |
| 14 | 5, 11 | cima 5688 |
. . . . 5
class (𝑓 “ ∪ 𝑗) |
| 15 | 14 | cpw 4600 |
. . . 4
class 𝒫
(𝑓 “ ∪ 𝑗) |
| 16 | 13, 7, 15 | crab 3436 |
. . 3
class {𝑠 ∈ 𝒫 (𝑓 “ ∪ 𝑗)
∣ ((◡𝑓 “ 𝑠) ∩ ∪ 𝑗) ∈ 𝑗} |
| 17 | 2, 3, 4, 4, 16 | cmpo 7433 |
. 2
class (𝑗 ∈ V, 𝑓 ∈ V ↦ {𝑠 ∈ 𝒫 (𝑓 “ ∪ 𝑗) ∣ ((◡𝑓 “ 𝑠) ∩ ∪ 𝑗) ∈ 𝑗}) |
| 18 | 1, 17 | wceq 1540 |
1
wff qTop =
(𝑗 ∈ V, 𝑓 ∈ V ↦ {𝑠 ∈ 𝒫 (𝑓 “ ∪ 𝑗)
∣ ((◡𝑓 “ 𝑠) ∩ ∪ 𝑗) ∈ 𝑗}) |