MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopval Structured version   Visualization version   GIF version

Theorem qtopval 22592
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
qtopval.1 𝑋 = 𝐽
Assertion
Ref Expression
qtopval ((𝐽𝑉𝐹𝑊) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽})
Distinct variable groups:   𝐹,𝑠   𝐽,𝑠   𝑉,𝑠   𝑋,𝑠
Allowed substitution hint:   𝑊(𝑠)

Proof of Theorem qtopval
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3426 . 2 (𝐽𝑉𝐽 ∈ V)
2 elex 3426 . 2 (𝐹𝑊𝐹 ∈ V)
3 imaexg 7693 . . . . 5 (𝐹 ∈ V → (𝐹𝑋) ∈ V)
4 pwexg 5271 . . . . 5 ((𝐹𝑋) ∈ V → 𝒫 (𝐹𝑋) ∈ V)
5 rabexg 5224 . . . . 5 (𝒫 (𝐹𝑋) ∈ V → {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽} ∈ V)
63, 4, 53syl 18 . . . 4 (𝐹 ∈ V → {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽} ∈ V)
76adantl 485 . . 3 ((𝐽 ∈ V ∧ 𝐹 ∈ V) → {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽} ∈ V)
8 simpr 488 . . . . . . 7 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑓 = 𝐹)
9 simpl 486 . . . . . . . . 9 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑗 = 𝐽)
109unieqd 4833 . . . . . . . 8 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑗 = 𝐽)
11 qtopval.1 . . . . . . . 8 𝑋 = 𝐽
1210, 11eqtr4di 2796 . . . . . . 7 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑗 = 𝑋)
138, 12imaeq12d 5930 . . . . . 6 ((𝑗 = 𝐽𝑓 = 𝐹) → (𝑓 𝑗) = (𝐹𝑋))
1413pweqd 4532 . . . . 5 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝒫 (𝑓 𝑗) = 𝒫 (𝐹𝑋))
158cnveqd 5744 . . . . . . . 8 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑓 = 𝐹)
1615imaeq1d 5928 . . . . . . 7 ((𝑗 = 𝐽𝑓 = 𝐹) → (𝑓𝑠) = (𝐹𝑠))
1716, 12ineq12d 4128 . . . . . 6 ((𝑗 = 𝐽𝑓 = 𝐹) → ((𝑓𝑠) ∩ 𝑗) = ((𝐹𝑠) ∩ 𝑋))
1817, 9eleq12d 2832 . . . . 5 ((𝑗 = 𝐽𝑓 = 𝐹) → (((𝑓𝑠) ∩ 𝑗) ∈ 𝑗 ↔ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽))
1914, 18rabeqbidv 3396 . . . 4 ((𝑗 = 𝐽𝑓 = 𝐹) → {𝑠 ∈ 𝒫 (𝑓 𝑗) ∣ ((𝑓𝑠) ∩ 𝑗) ∈ 𝑗} = {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽})
20 df-qtop 17012 . . . 4 qTop = (𝑗 ∈ V, 𝑓 ∈ V ↦ {𝑠 ∈ 𝒫 (𝑓 𝑗) ∣ ((𝑓𝑠) ∩ 𝑗) ∈ 𝑗})
2119, 20ovmpoga 7363 . . 3 ((𝐽 ∈ V ∧ 𝐹 ∈ V ∧ {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽} ∈ V) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽})
227, 21mpd3an3 1464 . 2 ((𝐽 ∈ V ∧ 𝐹 ∈ V) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽})
231, 2, 22syl2an 599 1 ((𝐽𝑉𝐹𝑊) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  {crab 3065  Vcvv 3408  cin 3865  𝒫 cpw 4513   cuni 4819  ccnv 5550  cima 5554  (class class class)co 7213   qTop cqtop 17008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-qtop 17012
This theorem is referenced by:  qtopval2  22593  qtopres  22595  imastopn  22617
  Copyright terms: Public domain W3C validator