MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopval Structured version   Visualization version   GIF version

Theorem qtopval 23199
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
qtopval.1 𝑋 = 𝐽
Assertion
Ref Expression
qtopval ((𝐽𝑉𝐹𝑊) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽})
Distinct variable groups:   𝐹,𝑠   𝐽,𝑠   𝑉,𝑠   𝑋,𝑠
Allowed substitution hint:   𝑊(𝑠)

Proof of Theorem qtopval
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3493 . 2 (𝐽𝑉𝐽 ∈ V)
2 elex 3493 . 2 (𝐹𝑊𝐹 ∈ V)
3 imaexg 7906 . . . . 5 (𝐹 ∈ V → (𝐹𝑋) ∈ V)
4 pwexg 5377 . . . . 5 ((𝐹𝑋) ∈ V → 𝒫 (𝐹𝑋) ∈ V)
5 rabexg 5332 . . . . 5 (𝒫 (𝐹𝑋) ∈ V → {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽} ∈ V)
63, 4, 53syl 18 . . . 4 (𝐹 ∈ V → {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽} ∈ V)
76adantl 483 . . 3 ((𝐽 ∈ V ∧ 𝐹 ∈ V) → {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽} ∈ V)
8 simpr 486 . . . . . . 7 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑓 = 𝐹)
9 simpl 484 . . . . . . . . 9 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑗 = 𝐽)
109unieqd 4923 . . . . . . . 8 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑗 = 𝐽)
11 qtopval.1 . . . . . . . 8 𝑋 = 𝐽
1210, 11eqtr4di 2791 . . . . . . 7 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑗 = 𝑋)
138, 12imaeq12d 6061 . . . . . 6 ((𝑗 = 𝐽𝑓 = 𝐹) → (𝑓 𝑗) = (𝐹𝑋))
1413pweqd 4620 . . . . 5 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝒫 (𝑓 𝑗) = 𝒫 (𝐹𝑋))
158cnveqd 5876 . . . . . . . 8 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑓 = 𝐹)
1615imaeq1d 6059 . . . . . . 7 ((𝑗 = 𝐽𝑓 = 𝐹) → (𝑓𝑠) = (𝐹𝑠))
1716, 12ineq12d 4214 . . . . . 6 ((𝑗 = 𝐽𝑓 = 𝐹) → ((𝑓𝑠) ∩ 𝑗) = ((𝐹𝑠) ∩ 𝑋))
1817, 9eleq12d 2828 . . . . 5 ((𝑗 = 𝐽𝑓 = 𝐹) → (((𝑓𝑠) ∩ 𝑗) ∈ 𝑗 ↔ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽))
1914, 18rabeqbidv 3450 . . . 4 ((𝑗 = 𝐽𝑓 = 𝐹) → {𝑠 ∈ 𝒫 (𝑓 𝑗) ∣ ((𝑓𝑠) ∩ 𝑗) ∈ 𝑗} = {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽})
20 df-qtop 17453 . . . 4 qTop = (𝑗 ∈ V, 𝑓 ∈ V ↦ {𝑠 ∈ 𝒫 (𝑓 𝑗) ∣ ((𝑓𝑠) ∩ 𝑗) ∈ 𝑗})
2119, 20ovmpoga 7562 . . 3 ((𝐽 ∈ V ∧ 𝐹 ∈ V ∧ {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽} ∈ V) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽})
227, 21mpd3an3 1463 . 2 ((𝐽 ∈ V ∧ 𝐹 ∈ V) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽})
231, 2, 22syl2an 597 1 ((𝐽𝑉𝐹𝑊) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {crab 3433  Vcvv 3475  cin 3948  𝒫 cpw 4603   cuni 4909  ccnv 5676  cima 5680  (class class class)co 7409   qTop cqtop 17449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-qtop 17453
This theorem is referenced by:  qtopval2  23200  qtopres  23202  imastopn  23224
  Copyright terms: Public domain W3C validator