MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopval Structured version   Visualization version   GIF version

Theorem qtopval 23719
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
qtopval.1 𝑋 = 𝐽
Assertion
Ref Expression
qtopval ((𝐽𝑉𝐹𝑊) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽})
Distinct variable groups:   𝐹,𝑠   𝐽,𝑠   𝑉,𝑠   𝑋,𝑠
Allowed substitution hint:   𝑊(𝑠)

Proof of Theorem qtopval
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3499 . 2 (𝐽𝑉𝐽 ∈ V)
2 elex 3499 . 2 (𝐹𝑊𝐹 ∈ V)
3 imaexg 7936 . . . . 5 (𝐹 ∈ V → (𝐹𝑋) ∈ V)
4 pwexg 5384 . . . . 5 ((𝐹𝑋) ∈ V → 𝒫 (𝐹𝑋) ∈ V)
5 rabexg 5343 . . . . 5 (𝒫 (𝐹𝑋) ∈ V → {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽} ∈ V)
63, 4, 53syl 18 . . . 4 (𝐹 ∈ V → {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽} ∈ V)
76adantl 481 . . 3 ((𝐽 ∈ V ∧ 𝐹 ∈ V) → {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽} ∈ V)
8 simpr 484 . . . . . . 7 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑓 = 𝐹)
9 simpl 482 . . . . . . . . 9 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑗 = 𝐽)
109unieqd 4925 . . . . . . . 8 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑗 = 𝐽)
11 qtopval.1 . . . . . . . 8 𝑋 = 𝐽
1210, 11eqtr4di 2793 . . . . . . 7 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑗 = 𝑋)
138, 12imaeq12d 6081 . . . . . 6 ((𝑗 = 𝐽𝑓 = 𝐹) → (𝑓 𝑗) = (𝐹𝑋))
1413pweqd 4622 . . . . 5 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝒫 (𝑓 𝑗) = 𝒫 (𝐹𝑋))
158cnveqd 5889 . . . . . . . 8 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑓 = 𝐹)
1615imaeq1d 6079 . . . . . . 7 ((𝑗 = 𝐽𝑓 = 𝐹) → (𝑓𝑠) = (𝐹𝑠))
1716, 12ineq12d 4229 . . . . . 6 ((𝑗 = 𝐽𝑓 = 𝐹) → ((𝑓𝑠) ∩ 𝑗) = ((𝐹𝑠) ∩ 𝑋))
1817, 9eleq12d 2833 . . . . 5 ((𝑗 = 𝐽𝑓 = 𝐹) → (((𝑓𝑠) ∩ 𝑗) ∈ 𝑗 ↔ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽))
1914, 18rabeqbidv 3452 . . . 4 ((𝑗 = 𝐽𝑓 = 𝐹) → {𝑠 ∈ 𝒫 (𝑓 𝑗) ∣ ((𝑓𝑠) ∩ 𝑗) ∈ 𝑗} = {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽})
20 df-qtop 17554 . . . 4 qTop = (𝑗 ∈ V, 𝑓 ∈ V ↦ {𝑠 ∈ 𝒫 (𝑓 𝑗) ∣ ((𝑓𝑠) ∩ 𝑗) ∈ 𝑗})
2119, 20ovmpoga 7587 . . 3 ((𝐽 ∈ V ∧ 𝐹 ∈ V ∧ {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽} ∈ V) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽})
227, 21mpd3an3 1461 . 2 ((𝐽 ∈ V ∧ 𝐹 ∈ V) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽})
231, 2, 22syl2an 596 1 ((𝐽𝑉𝐹𝑊) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478  cin 3962  𝒫 cpw 4605   cuni 4912  ccnv 5688  cima 5692  (class class class)co 7431   qTop cqtop 17550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-qtop 17554
This theorem is referenced by:  qtopval2  23720  qtopres  23722  imastopn  23744
  Copyright terms: Public domain W3C validator