MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-q1p Structured version   Visualization version   GIF version

Definition df-q1p 26014
Description: Define the quotient of two univariate polynomials, which is guaranteed to exist and be unique by ply1divalg 26019. We actually use the reversed version for better harmony with our divisibility df-dvdsr 20242. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Assertion
Ref Expression
df-q1p quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
Distinct variable group:   𝑓,𝑟,𝑔,𝑏,𝑝,𝑞

Detailed syntax breakdown of Definition df-q1p
StepHypRef Expression
1 cq1p 26009 . 2 class quot1p
2 vr . . 3 setvar 𝑟
3 cvv 3444 . . 3 class V
4 vp . . . 4 setvar 𝑝
52cv 1539 . . . . 5 class 𝑟
6 cpl1 22037 . . . . 5 class Poly1
75, 6cfv 6499 . . . 4 class (Poly1𝑟)
8 vb . . . . 5 setvar 𝑏
94cv 1539 . . . . . 6 class 𝑝
10 cbs 17155 . . . . . 6 class Base
119, 10cfv 6499 . . . . 5 class (Base‘𝑝)
12 vf . . . . . 6 setvar 𝑓
13 vg . . . . . 6 setvar 𝑔
148cv 1539 . . . . . 6 class 𝑏
1512cv 1539 . . . . . . . . . 10 class 𝑓
16 vq . . . . . . . . . . . 12 setvar 𝑞
1716cv 1539 . . . . . . . . . . 11 class 𝑞
1813cv 1539 . . . . . . . . . . 11 class 𝑔
19 cmulr 17197 . . . . . . . . . . . 12 class .r
209, 19cfv 6499 . . . . . . . . . . 11 class (.r𝑝)
2117, 18, 20co 7369 . . . . . . . . . 10 class (𝑞(.r𝑝)𝑔)
22 csg 18843 . . . . . . . . . . 11 class -g
239, 22cfv 6499 . . . . . . . . . 10 class (-g𝑝)
2415, 21, 23co 7369 . . . . . . . . 9 class (𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))
25 cdg1 25935 . . . . . . . . . 10 class deg1
265, 25cfv 6499 . . . . . . . . 9 class (deg1𝑟)
2724, 26cfv 6499 . . . . . . . 8 class ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔)))
2818, 26cfv 6499 . . . . . . . 8 class ((deg1𝑟)‘𝑔)
29 clt 11184 . . . . . . . 8 class <
3027, 28, 29wbr 5102 . . . . . . 7 wff ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)
3130, 16, 14crio 7325 . . . . . 6 class (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))
3212, 13, 14, 14, 31cmpo 7371 . . . . 5 class (𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)))
338, 11, 32csb 3859 . . . 4 class (Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)))
344, 7, 33csb 3859 . . 3 class (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)))
352, 3, 34cmpt 5183 . 2 class (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
361, 35wceq 1540 1 wff quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
Colors of variables: wff setvar class
This definition is referenced by:  q1pval  26036
  Copyright terms: Public domain W3C validator