MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-q1p Structured version   Visualization version   GIF version

Definition df-q1p 25884
Description: Define the quotient of two univariate polynomials, which is guaranteed to exist and be unique by ply1divalg 25889. We actually use the reversed version for better harmony with our divisibility df-dvdsr 20250. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Assertion
Ref Expression
df-q1p quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔))))
Distinct variable group:   𝑓,𝑟,𝑔,𝑏,𝑝,𝑞

Detailed syntax breakdown of Definition df-q1p
StepHypRef Expression
1 cq1p 25879 . 2 class quot1p
2 vr . . 3 setvar 𝑟
3 cvv 3472 . . 3 class V
4 vp . . . 4 setvar 𝑝
52cv 1538 . . . . 5 class 𝑟
6 cpl1 21922 . . . . 5 class Poly1
75, 6cfv 6544 . . . 4 class (Poly1𝑟)
8 vb . . . . 5 setvar 𝑏
94cv 1538 . . . . . 6 class 𝑝
10 cbs 17150 . . . . . 6 class Base
119, 10cfv 6544 . . . . 5 class (Base‘𝑝)
12 vf . . . . . 6 setvar 𝑓
13 vg . . . . . 6 setvar 𝑔
148cv 1538 . . . . . 6 class 𝑏
1512cv 1538 . . . . . . . . . 10 class 𝑓
16 vq . . . . . . . . . . . 12 setvar 𝑞
1716cv 1538 . . . . . . . . . . 11 class 𝑞
1813cv 1538 . . . . . . . . . . 11 class 𝑔
19 cmulr 17204 . . . . . . . . . . . 12 class .r
209, 19cfv 6544 . . . . . . . . . . 11 class (.r𝑝)
2117, 18, 20co 7413 . . . . . . . . . 10 class (𝑞(.r𝑝)𝑔)
22 csg 18859 . . . . . . . . . . 11 class -g
239, 22cfv 6544 . . . . . . . . . 10 class (-g𝑝)
2415, 21, 23co 7413 . . . . . . . . 9 class (𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))
25 cdg1 25803 . . . . . . . . . 10 class deg1
265, 25cfv 6544 . . . . . . . . 9 class ( deg1𝑟)
2724, 26cfv 6544 . . . . . . . 8 class (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔)))
2818, 26cfv 6544 . . . . . . . 8 class (( deg1𝑟)‘𝑔)
29 clt 11254 . . . . . . . 8 class <
3027, 28, 29wbr 5149 . . . . . . 7 wff (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔)
3130, 16, 14crio 7368 . . . . . 6 class (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔))
3212, 13, 14, 14, 31cmpo 7415 . . . . 5 class (𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔)))
338, 11, 32csb 3894 . . . 4 class (Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔)))
344, 7, 33csb 3894 . . 3 class (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔)))
352, 3, 34cmpt 5232 . 2 class (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔))))
361, 35wceq 1539 1 wff quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔))))
Colors of variables: wff setvar class
This definition is referenced by:  q1pval  25905
  Copyright terms: Public domain W3C validator