MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-q1p Structured version   Visualization version   GIF version

Definition df-q1p 25650
Description: Define the quotient of two univariate polynomials, which is guaranteed to exist and be unique by ply1divalg 25655. We actually use the reversed version for better harmony with our divisibility df-dvdsr 20171. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Assertion
Ref Expression
df-q1p quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔))))
Distinct variable group:   𝑓,𝑟,𝑔,𝑏,𝑝,𝑞

Detailed syntax breakdown of Definition df-q1p
StepHypRef Expression
1 cq1p 25645 . 2 class quot1p
2 vr . . 3 setvar 𝑟
3 cvv 3475 . . 3 class V
4 vp . . . 4 setvar 𝑝
52cv 1541 . . . . 5 class 𝑟
6 cpl1 21701 . . . . 5 class Poly1
75, 6cfv 6544 . . . 4 class (Poly1𝑟)
8 vb . . . . 5 setvar 𝑏
94cv 1541 . . . . . 6 class 𝑝
10 cbs 17144 . . . . . 6 class Base
119, 10cfv 6544 . . . . 5 class (Base‘𝑝)
12 vf . . . . . 6 setvar 𝑓
13 vg . . . . . 6 setvar 𝑔
148cv 1541 . . . . . 6 class 𝑏
1512cv 1541 . . . . . . . . . 10 class 𝑓
16 vq . . . . . . . . . . . 12 setvar 𝑞
1716cv 1541 . . . . . . . . . . 11 class 𝑞
1813cv 1541 . . . . . . . . . . 11 class 𝑔
19 cmulr 17198 . . . . . . . . . . . 12 class .r
209, 19cfv 6544 . . . . . . . . . . 11 class (.r𝑝)
2117, 18, 20co 7409 . . . . . . . . . 10 class (𝑞(.r𝑝)𝑔)
22 csg 18821 . . . . . . . . . . 11 class -g
239, 22cfv 6544 . . . . . . . . . 10 class (-g𝑝)
2415, 21, 23co 7409 . . . . . . . . 9 class (𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))
25 cdg1 25569 . . . . . . . . . 10 class deg1
265, 25cfv 6544 . . . . . . . . 9 class ( deg1𝑟)
2724, 26cfv 6544 . . . . . . . 8 class (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔)))
2818, 26cfv 6544 . . . . . . . 8 class (( deg1𝑟)‘𝑔)
29 clt 11248 . . . . . . . 8 class <
3027, 28, 29wbr 5149 . . . . . . 7 wff (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔)
3130, 16, 14crio 7364 . . . . . 6 class (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔))
3212, 13, 14, 14, 31cmpo 7411 . . . . 5 class (𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔)))
338, 11, 32csb 3894 . . . 4 class (Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔)))
344, 7, 33csb 3894 . . 3 class (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔)))
352, 3, 34cmpt 5232 . 2 class (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔))))
361, 35wceq 1542 1 wff quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔))))
Colors of variables: wff setvar class
This definition is referenced by:  q1pval  25671
  Copyright terms: Public domain W3C validator