MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-q1p Structured version   Visualization version   GIF version

Definition df-q1p 26090
Description: Define the quotient of two univariate polynomials, which is guaranteed to exist and be unique by ply1divalg 26095. We actually use the reversed version for better harmony with our divisibility df-dvdsr 20317. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Assertion
Ref Expression
df-q1p quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
Distinct variable group:   𝑓,𝑟,𝑔,𝑏,𝑝,𝑞

Detailed syntax breakdown of Definition df-q1p
StepHypRef Expression
1 cq1p 26085 . 2 class quot1p
2 vr . . 3 setvar 𝑟
3 cvv 3459 . . 3 class V
4 vp . . . 4 setvar 𝑝
52cv 1539 . . . . 5 class 𝑟
6 cpl1 22112 . . . . 5 class Poly1
75, 6cfv 6531 . . . 4 class (Poly1𝑟)
8 vb . . . . 5 setvar 𝑏
94cv 1539 . . . . . 6 class 𝑝
10 cbs 17228 . . . . . 6 class Base
119, 10cfv 6531 . . . . 5 class (Base‘𝑝)
12 vf . . . . . 6 setvar 𝑓
13 vg . . . . . 6 setvar 𝑔
148cv 1539 . . . . . 6 class 𝑏
1512cv 1539 . . . . . . . . . 10 class 𝑓
16 vq . . . . . . . . . . . 12 setvar 𝑞
1716cv 1539 . . . . . . . . . . 11 class 𝑞
1813cv 1539 . . . . . . . . . . 11 class 𝑔
19 cmulr 17272 . . . . . . . . . . . 12 class .r
209, 19cfv 6531 . . . . . . . . . . 11 class (.r𝑝)
2117, 18, 20co 7405 . . . . . . . . . 10 class (𝑞(.r𝑝)𝑔)
22 csg 18918 . . . . . . . . . . 11 class -g
239, 22cfv 6531 . . . . . . . . . 10 class (-g𝑝)
2415, 21, 23co 7405 . . . . . . . . 9 class (𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))
25 cdg1 26011 . . . . . . . . . 10 class deg1
265, 25cfv 6531 . . . . . . . . 9 class (deg1𝑟)
2724, 26cfv 6531 . . . . . . . 8 class ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔)))
2818, 26cfv 6531 . . . . . . . 8 class ((deg1𝑟)‘𝑔)
29 clt 11269 . . . . . . . 8 class <
3027, 28, 29wbr 5119 . . . . . . 7 wff ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)
3130, 16, 14crio 7361 . . . . . 6 class (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))
3212, 13, 14, 14, 31cmpo 7407 . . . . 5 class (𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)))
338, 11, 32csb 3874 . . . 4 class (Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)))
344, 7, 33csb 3874 . . 3 class (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)))
352, 3, 34cmpt 5201 . 2 class (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
361, 35wceq 1540 1 wff quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
Colors of variables: wff setvar class
This definition is referenced by:  q1pval  26112
  Copyright terms: Public domain W3C validator