MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-q1p Structured version   Visualization version   GIF version

Definition df-q1p 26038
Description: Define the quotient of two univariate polynomials, which is guaranteed to exist and be unique by ply1divalg 26043. We actually use the reversed version for better harmony with our divisibility df-dvdsr 20266. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Assertion
Ref Expression
df-q1p quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
Distinct variable group:   𝑓,𝑟,𝑔,𝑏,𝑝,𝑞

Detailed syntax breakdown of Definition df-q1p
StepHypRef Expression
1 cq1p 26033 . 2 class quot1p
2 vr . . 3 setvar 𝑟
3 cvv 3447 . . 3 class V
4 vp . . . 4 setvar 𝑝
52cv 1539 . . . . 5 class 𝑟
6 cpl1 22061 . . . . 5 class Poly1
75, 6cfv 6511 . . . 4 class (Poly1𝑟)
8 vb . . . . 5 setvar 𝑏
94cv 1539 . . . . . 6 class 𝑝
10 cbs 17179 . . . . . 6 class Base
119, 10cfv 6511 . . . . 5 class (Base‘𝑝)
12 vf . . . . . 6 setvar 𝑓
13 vg . . . . . 6 setvar 𝑔
148cv 1539 . . . . . 6 class 𝑏
1512cv 1539 . . . . . . . . . 10 class 𝑓
16 vq . . . . . . . . . . . 12 setvar 𝑞
1716cv 1539 . . . . . . . . . . 11 class 𝑞
1813cv 1539 . . . . . . . . . . 11 class 𝑔
19 cmulr 17221 . . . . . . . . . . . 12 class .r
209, 19cfv 6511 . . . . . . . . . . 11 class (.r𝑝)
2117, 18, 20co 7387 . . . . . . . . . 10 class (𝑞(.r𝑝)𝑔)
22 csg 18867 . . . . . . . . . . 11 class -g
239, 22cfv 6511 . . . . . . . . . 10 class (-g𝑝)
2415, 21, 23co 7387 . . . . . . . . 9 class (𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))
25 cdg1 25959 . . . . . . . . . 10 class deg1
265, 25cfv 6511 . . . . . . . . 9 class (deg1𝑟)
2724, 26cfv 6511 . . . . . . . 8 class ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔)))
2818, 26cfv 6511 . . . . . . . 8 class ((deg1𝑟)‘𝑔)
29 clt 11208 . . . . . . . 8 class <
3027, 28, 29wbr 5107 . . . . . . 7 wff ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)
3130, 16, 14crio 7343 . . . . . 6 class (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))
3212, 13, 14, 14, 31cmpo 7389 . . . . 5 class (𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)))
338, 11, 32csb 3862 . . . 4 class (Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)))
344, 7, 33csb 3862 . . 3 class (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)))
352, 3, 34cmpt 5188 . 2 class (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
361, 35wceq 1540 1 wff quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
Colors of variables: wff setvar class
This definition is referenced by:  q1pval  26060
  Copyright terms: Public domain W3C validator