MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-q1p Structured version   Visualization version   GIF version

Definition df-q1p 25306
Description: Define the quotient of two univariate polynomials, which is guaranteed to exist and be unique by ply1divalg 25311. We actually use the reversed version for better harmony with our divisibility df-dvdsr 19892. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Assertion
Ref Expression
df-q1p quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔))))
Distinct variable group:   𝑓,𝑟,𝑔,𝑏,𝑝,𝑞

Detailed syntax breakdown of Definition df-q1p
StepHypRef Expression
1 cq1p 25301 . 2 class quot1p
2 vr . . 3 setvar 𝑟
3 cvv 3433 . . 3 class V
4 vp . . . 4 setvar 𝑝
52cv 1538 . . . . 5 class 𝑟
6 cpl1 21357 . . . . 5 class Poly1
75, 6cfv 6437 . . . 4 class (Poly1𝑟)
8 vb . . . . 5 setvar 𝑏
94cv 1538 . . . . . 6 class 𝑝
10 cbs 16921 . . . . . 6 class Base
119, 10cfv 6437 . . . . 5 class (Base‘𝑝)
12 vf . . . . . 6 setvar 𝑓
13 vg . . . . . 6 setvar 𝑔
148cv 1538 . . . . . 6 class 𝑏
1512cv 1538 . . . . . . . . . 10 class 𝑓
16 vq . . . . . . . . . . . 12 setvar 𝑞
1716cv 1538 . . . . . . . . . . 11 class 𝑞
1813cv 1538 . . . . . . . . . . 11 class 𝑔
19 cmulr 16972 . . . . . . . . . . . 12 class .r
209, 19cfv 6437 . . . . . . . . . . 11 class (.r𝑝)
2117, 18, 20co 7284 . . . . . . . . . 10 class (𝑞(.r𝑝)𝑔)
22 csg 18588 . . . . . . . . . . 11 class -g
239, 22cfv 6437 . . . . . . . . . 10 class (-g𝑝)
2415, 21, 23co 7284 . . . . . . . . 9 class (𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))
25 cdg1 25225 . . . . . . . . . 10 class deg1
265, 25cfv 6437 . . . . . . . . 9 class ( deg1𝑟)
2724, 26cfv 6437 . . . . . . . 8 class (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔)))
2818, 26cfv 6437 . . . . . . . 8 class (( deg1𝑟)‘𝑔)
29 clt 11018 . . . . . . . 8 class <
3027, 28, 29wbr 5075 . . . . . . 7 wff (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔)
3130, 16, 14crio 7240 . . . . . 6 class (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔))
3212, 13, 14, 14, 31cmpo 7286 . . . . 5 class (𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔)))
338, 11, 32csb 3833 . . . 4 class (Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔)))
344, 7, 33csb 3833 . . 3 class (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔)))
352, 3, 34cmpt 5158 . 2 class (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔))))
361, 35wceq 1539 1 wff quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔))))
Colors of variables: wff setvar class
This definition is referenced by:  q1pval  25327
  Copyright terms: Public domain W3C validator