MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-q1p Structured version   Visualization version   GIF version

Definition df-q1p 26045
Description: Define the quotient of two univariate polynomials, which is guaranteed to exist and be unique by ply1divalg 26050. We actually use the reversed version for better harmony with our divisibility df-dvdsr 20273. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Assertion
Ref Expression
df-q1p quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
Distinct variable group:   𝑓,𝑟,𝑔,𝑏,𝑝,𝑞

Detailed syntax breakdown of Definition df-q1p
StepHypRef Expression
1 cq1p 26040 . 2 class quot1p
2 vr . . 3 setvar 𝑟
3 cvv 3450 . . 3 class V
4 vp . . . 4 setvar 𝑝
52cv 1539 . . . . 5 class 𝑟
6 cpl1 22068 . . . . 5 class Poly1
75, 6cfv 6514 . . . 4 class (Poly1𝑟)
8 vb . . . . 5 setvar 𝑏
94cv 1539 . . . . . 6 class 𝑝
10 cbs 17186 . . . . . 6 class Base
119, 10cfv 6514 . . . . 5 class (Base‘𝑝)
12 vf . . . . . 6 setvar 𝑓
13 vg . . . . . 6 setvar 𝑔
148cv 1539 . . . . . 6 class 𝑏
1512cv 1539 . . . . . . . . . 10 class 𝑓
16 vq . . . . . . . . . . . 12 setvar 𝑞
1716cv 1539 . . . . . . . . . . 11 class 𝑞
1813cv 1539 . . . . . . . . . . 11 class 𝑔
19 cmulr 17228 . . . . . . . . . . . 12 class .r
209, 19cfv 6514 . . . . . . . . . . 11 class (.r𝑝)
2117, 18, 20co 7390 . . . . . . . . . 10 class (𝑞(.r𝑝)𝑔)
22 csg 18874 . . . . . . . . . . 11 class -g
239, 22cfv 6514 . . . . . . . . . 10 class (-g𝑝)
2415, 21, 23co 7390 . . . . . . . . 9 class (𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))
25 cdg1 25966 . . . . . . . . . 10 class deg1
265, 25cfv 6514 . . . . . . . . 9 class (deg1𝑟)
2724, 26cfv 6514 . . . . . . . 8 class ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔)))
2818, 26cfv 6514 . . . . . . . 8 class ((deg1𝑟)‘𝑔)
29 clt 11215 . . . . . . . 8 class <
3027, 28, 29wbr 5110 . . . . . . 7 wff ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)
3130, 16, 14crio 7346 . . . . . 6 class (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))
3212, 13, 14, 14, 31cmpo 7392 . . . . 5 class (𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)))
338, 11, 32csb 3865 . . . 4 class (Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)))
344, 7, 33csb 3865 . . 3 class (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)))
352, 3, 34cmpt 5191 . 2 class (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
361, 35wceq 1540 1 wff quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
Colors of variables: wff setvar class
This definition is referenced by:  q1pval  26067
  Copyright terms: Public domain W3C validator