MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-q1p Structured version   Visualization version   GIF version

Definition df-q1p 25202
Description: Define the quotient of two univariate polynomials, which is guaranteed to exist and be unique by ply1divalg 25207. We actually use the reversed version for better harmony with our divisibility df-dvdsr 19798. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Assertion
Ref Expression
df-q1p quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔))))
Distinct variable group:   𝑓,𝑟,𝑔,𝑏,𝑝,𝑞

Detailed syntax breakdown of Definition df-q1p
StepHypRef Expression
1 cq1p 25197 . 2 class quot1p
2 vr . . 3 setvar 𝑟
3 cvv 3422 . . 3 class V
4 vp . . . 4 setvar 𝑝
52cv 1538 . . . . 5 class 𝑟
6 cpl1 21258 . . . . 5 class Poly1
75, 6cfv 6418 . . . 4 class (Poly1𝑟)
8 vb . . . . 5 setvar 𝑏
94cv 1538 . . . . . 6 class 𝑝
10 cbs 16840 . . . . . 6 class Base
119, 10cfv 6418 . . . . 5 class (Base‘𝑝)
12 vf . . . . . 6 setvar 𝑓
13 vg . . . . . 6 setvar 𝑔
148cv 1538 . . . . . 6 class 𝑏
1512cv 1538 . . . . . . . . . 10 class 𝑓
16 vq . . . . . . . . . . . 12 setvar 𝑞
1716cv 1538 . . . . . . . . . . 11 class 𝑞
1813cv 1538 . . . . . . . . . . 11 class 𝑔
19 cmulr 16889 . . . . . . . . . . . 12 class .r
209, 19cfv 6418 . . . . . . . . . . 11 class (.r𝑝)
2117, 18, 20co 7255 . . . . . . . . . 10 class (𝑞(.r𝑝)𝑔)
22 csg 18494 . . . . . . . . . . 11 class -g
239, 22cfv 6418 . . . . . . . . . 10 class (-g𝑝)
2415, 21, 23co 7255 . . . . . . . . 9 class (𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))
25 cdg1 25121 . . . . . . . . . 10 class deg1
265, 25cfv 6418 . . . . . . . . 9 class ( deg1𝑟)
2724, 26cfv 6418 . . . . . . . 8 class (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔)))
2818, 26cfv 6418 . . . . . . . 8 class (( deg1𝑟)‘𝑔)
29 clt 10940 . . . . . . . 8 class <
3027, 28, 29wbr 5070 . . . . . . 7 wff (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔)
3130, 16, 14crio 7211 . . . . . 6 class (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔))
3212, 13, 14, 14, 31cmpo 7257 . . . . 5 class (𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔)))
338, 11, 32csb 3828 . . . 4 class (Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔)))
344, 7, 33csb 3828 . . 3 class (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔)))
352, 3, 34cmpt 5153 . 2 class (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔))))
361, 35wceq 1539 1 wff quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔))))
Colors of variables: wff setvar class
This definition is referenced by:  q1pval  25223
  Copyright terms: Public domain W3C validator