MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-q1p Structured version   Visualization version   GIF version

Definition df-q1p 26192
Description: Define the quotient of two univariate polynomials, which is guaranteed to exist and be unique by ply1divalg 26197. We actually use the reversed version for better harmony with our divisibility df-dvdsr 20383. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Assertion
Ref Expression
df-q1p quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
Distinct variable group:   𝑓,𝑟,𝑔,𝑏,𝑝,𝑞

Detailed syntax breakdown of Definition df-q1p
StepHypRef Expression
1 cq1p 26187 . 2 class quot1p
2 vr . . 3 setvar 𝑟
3 cvv 3488 . . 3 class V
4 vp . . . 4 setvar 𝑝
52cv 1536 . . . . 5 class 𝑟
6 cpl1 22199 . . . . 5 class Poly1
75, 6cfv 6573 . . . 4 class (Poly1𝑟)
8 vb . . . . 5 setvar 𝑏
94cv 1536 . . . . . 6 class 𝑝
10 cbs 17258 . . . . . 6 class Base
119, 10cfv 6573 . . . . 5 class (Base‘𝑝)
12 vf . . . . . 6 setvar 𝑓
13 vg . . . . . 6 setvar 𝑔
148cv 1536 . . . . . 6 class 𝑏
1512cv 1536 . . . . . . . . . 10 class 𝑓
16 vq . . . . . . . . . . . 12 setvar 𝑞
1716cv 1536 . . . . . . . . . . 11 class 𝑞
1813cv 1536 . . . . . . . . . . 11 class 𝑔
19 cmulr 17312 . . . . . . . . . . . 12 class .r
209, 19cfv 6573 . . . . . . . . . . 11 class (.r𝑝)
2117, 18, 20co 7448 . . . . . . . . . 10 class (𝑞(.r𝑝)𝑔)
22 csg 18975 . . . . . . . . . . 11 class -g
239, 22cfv 6573 . . . . . . . . . 10 class (-g𝑝)
2415, 21, 23co 7448 . . . . . . . . 9 class (𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))
25 cdg1 26113 . . . . . . . . . 10 class deg1
265, 25cfv 6573 . . . . . . . . 9 class (deg1𝑟)
2724, 26cfv 6573 . . . . . . . 8 class ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔)))
2818, 26cfv 6573 . . . . . . . 8 class ((deg1𝑟)‘𝑔)
29 clt 11324 . . . . . . . 8 class <
3027, 28, 29wbr 5166 . . . . . . 7 wff ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)
3130, 16, 14crio 7403 . . . . . 6 class (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))
3212, 13, 14, 14, 31cmpo 7450 . . . . 5 class (𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)))
338, 11, 32csb 3921 . . . 4 class (Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)))
344, 7, 33csb 3921 . . 3 class (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)))
352, 3, 34cmpt 5249 . 2 class (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
361, 35wceq 1537 1 wff quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
Colors of variables: wff setvar class
This definition is referenced by:  q1pval  26214
  Copyright terms: Public domain W3C validator