MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-q1p Structured version   Visualization version   GIF version

Definition df-q1p 26085
Description: Define the quotient of two univariate polynomials, which is guaranteed to exist and be unique by ply1divalg 26090. We actually use the reversed version for better harmony with our divisibility df-dvdsr 20284. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Assertion
Ref Expression
df-q1p quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
Distinct variable group:   𝑓,𝑟,𝑔,𝑏,𝑝,𝑞

Detailed syntax breakdown of Definition df-q1p
StepHypRef Expression
1 cq1p 26080 . 2 class quot1p
2 vr . . 3 setvar 𝑟
3 cvv 3437 . . 3 class V
4 vp . . . 4 setvar 𝑝
52cv 1540 . . . . 5 class 𝑟
6 cpl1 22108 . . . . 5 class Poly1
75, 6cfv 6489 . . . 4 class (Poly1𝑟)
8 vb . . . . 5 setvar 𝑏
94cv 1540 . . . . . 6 class 𝑝
10 cbs 17127 . . . . . 6 class Base
119, 10cfv 6489 . . . . 5 class (Base‘𝑝)
12 vf . . . . . 6 setvar 𝑓
13 vg . . . . . 6 setvar 𝑔
148cv 1540 . . . . . 6 class 𝑏
1512cv 1540 . . . . . . . . . 10 class 𝑓
16 vq . . . . . . . . . . . 12 setvar 𝑞
1716cv 1540 . . . . . . . . . . 11 class 𝑞
1813cv 1540 . . . . . . . . . . 11 class 𝑔
19 cmulr 17169 . . . . . . . . . . . 12 class .r
209, 19cfv 6489 . . . . . . . . . . 11 class (.r𝑝)
2117, 18, 20co 7355 . . . . . . . . . 10 class (𝑞(.r𝑝)𝑔)
22 csg 18856 . . . . . . . . . . 11 class -g
239, 22cfv 6489 . . . . . . . . . 10 class (-g𝑝)
2415, 21, 23co 7355 . . . . . . . . 9 class (𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))
25 cdg1 26006 . . . . . . . . . 10 class deg1
265, 25cfv 6489 . . . . . . . . 9 class (deg1𝑟)
2724, 26cfv 6489 . . . . . . . 8 class ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔)))
2818, 26cfv 6489 . . . . . . . 8 class ((deg1𝑟)‘𝑔)
29 clt 11157 . . . . . . . 8 class <
3027, 28, 29wbr 5095 . . . . . . 7 wff ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)
3130, 16, 14crio 7311 . . . . . 6 class (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))
3212, 13, 14, 14, 31cmpo 7357 . . . . 5 class (𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)))
338, 11, 32csb 3846 . . . 4 class (Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)))
344, 7, 33csb 3846 . . 3 class (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)))
352, 3, 34cmpt 5176 . 2 class (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
361, 35wceq 1541 1 wff quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
Colors of variables: wff setvar class
This definition is referenced by:  q1pval  26107
  Copyright terms: Public domain W3C validator