MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-q1p Structured version   Visualization version   GIF version

Definition df-q1p 26186
Description: Define the quotient of two univariate polynomials, which is guaranteed to exist and be unique by ply1divalg 26191. We actually use the reversed version for better harmony with our divisibility df-dvdsr 20373. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Assertion
Ref Expression
df-q1p quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
Distinct variable group:   𝑓,𝑟,𝑔,𝑏,𝑝,𝑞

Detailed syntax breakdown of Definition df-q1p
StepHypRef Expression
1 cq1p 26181 . 2 class quot1p
2 vr . . 3 setvar 𝑟
3 cvv 3477 . . 3 class V
4 vp . . . 4 setvar 𝑝
52cv 1535 . . . . 5 class 𝑟
6 cpl1 22193 . . . . 5 class Poly1
75, 6cfv 6562 . . . 4 class (Poly1𝑟)
8 vb . . . . 5 setvar 𝑏
94cv 1535 . . . . . 6 class 𝑝
10 cbs 17244 . . . . . 6 class Base
119, 10cfv 6562 . . . . 5 class (Base‘𝑝)
12 vf . . . . . 6 setvar 𝑓
13 vg . . . . . 6 setvar 𝑔
148cv 1535 . . . . . 6 class 𝑏
1512cv 1535 . . . . . . . . . 10 class 𝑓
16 vq . . . . . . . . . . . 12 setvar 𝑞
1716cv 1535 . . . . . . . . . . 11 class 𝑞
1813cv 1535 . . . . . . . . . . 11 class 𝑔
19 cmulr 17298 . . . . . . . . . . . 12 class .r
209, 19cfv 6562 . . . . . . . . . . 11 class (.r𝑝)
2117, 18, 20co 7430 . . . . . . . . . 10 class (𝑞(.r𝑝)𝑔)
22 csg 18965 . . . . . . . . . . 11 class -g
239, 22cfv 6562 . . . . . . . . . 10 class (-g𝑝)
2415, 21, 23co 7430 . . . . . . . . 9 class (𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))
25 cdg1 26107 . . . . . . . . . 10 class deg1
265, 25cfv 6562 . . . . . . . . 9 class (deg1𝑟)
2724, 26cfv 6562 . . . . . . . 8 class ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔)))
2818, 26cfv 6562 . . . . . . . 8 class ((deg1𝑟)‘𝑔)
29 clt 11292 . . . . . . . 8 class <
3027, 28, 29wbr 5147 . . . . . . 7 wff ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)
3130, 16, 14crio 7386 . . . . . 6 class (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))
3212, 13, 14, 14, 31cmpo 7432 . . . . 5 class (𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)))
338, 11, 32csb 3907 . . . 4 class (Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)))
344, 7, 33csb 3907 . . 3 class (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)))
352, 3, 34cmpt 5230 . 2 class (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
361, 35wceq 1536 1 wff quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
Colors of variables: wff setvar class
This definition is referenced by:  q1pval  26208
  Copyright terms: Public domain W3C validator