Detailed syntax breakdown of Definition df-q1p
Step | Hyp | Ref
| Expression |
1 | | cq1p 25301 |
. 2
class
quot1p |
2 | | vr |
. . 3
setvar 𝑟 |
3 | | cvv 3433 |
. . 3
class
V |
4 | | vp |
. . . 4
setvar 𝑝 |
5 | 2 | cv 1538 |
. . . . 5
class 𝑟 |
6 | | cpl1 21357 |
. . . . 5
class
Poly1 |
7 | 5, 6 | cfv 6437 |
. . . 4
class
(Poly1‘𝑟) |
8 | | vb |
. . . . 5
setvar 𝑏 |
9 | 4 | cv 1538 |
. . . . . 6
class 𝑝 |
10 | | cbs 16921 |
. . . . . 6
class
Base |
11 | 9, 10 | cfv 6437 |
. . . . 5
class
(Base‘𝑝) |
12 | | vf |
. . . . . 6
setvar 𝑓 |
13 | | vg |
. . . . . 6
setvar 𝑔 |
14 | 8 | cv 1538 |
. . . . . 6
class 𝑏 |
15 | 12 | cv 1538 |
. . . . . . . . . 10
class 𝑓 |
16 | | vq |
. . . . . . . . . . . 12
setvar 𝑞 |
17 | 16 | cv 1538 |
. . . . . . . . . . 11
class 𝑞 |
18 | 13 | cv 1538 |
. . . . . . . . . . 11
class 𝑔 |
19 | | cmulr 16972 |
. . . . . . . . . . . 12
class
.r |
20 | 9, 19 | cfv 6437 |
. . . . . . . . . . 11
class
(.r‘𝑝) |
21 | 17, 18, 20 | co 7284 |
. . . . . . . . . 10
class (𝑞(.r‘𝑝)𝑔) |
22 | | csg 18588 |
. . . . . . . . . . 11
class
-g |
23 | 9, 22 | cfv 6437 |
. . . . . . . . . 10
class
(-g‘𝑝) |
24 | 15, 21, 23 | co 7284 |
. . . . . . . . 9
class (𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔)) |
25 | | cdg1 25225 |
. . . . . . . . . 10
class
deg1 |
26 | 5, 25 | cfv 6437 |
. . . . . . . . 9
class (
deg1 ‘𝑟) |
27 | 24, 26 | cfv 6437 |
. . . . . . . 8
class ((
deg1 ‘𝑟)‘(𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔))) |
28 | 18, 26 | cfv 6437 |
. . . . . . . 8
class ((
deg1 ‘𝑟)‘𝑔) |
29 | | clt 11018 |
. . . . . . . 8
class
< |
30 | 27, 28, 29 | wbr 5075 |
. . . . . . 7
wff ((
deg1 ‘𝑟)‘(𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔))) < (( deg1 ‘𝑟)‘𝑔) |
31 | 30, 16, 14 | crio 7240 |
. . . . . 6
class
(℩𝑞
∈ 𝑏 (( deg1
‘𝑟)‘(𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔))) < (( deg1 ‘𝑟)‘𝑔)) |
32 | 12, 13, 14, 14, 31 | cmpo 7286 |
. . . . 5
class (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (℩𝑞 ∈ 𝑏 (( deg1 ‘𝑟)‘(𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔))) < (( deg1 ‘𝑟)‘𝑔))) |
33 | 8, 11, 32 | csb 3833 |
. . . 4
class
⦋(Base‘𝑝) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (℩𝑞 ∈ 𝑏 (( deg1 ‘𝑟)‘(𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔))) < (( deg1 ‘𝑟)‘𝑔))) |
34 | 4, 7, 33 | csb 3833 |
. . 3
class
⦋(Poly1‘𝑟) / 𝑝⦌⦋(Base‘𝑝) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (℩𝑞 ∈ 𝑏 (( deg1 ‘𝑟)‘(𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔))) < (( deg1 ‘𝑟)‘𝑔))) |
35 | 2, 3, 34 | cmpt 5158 |
. 2
class (𝑟 ∈ V ↦
⦋(Poly1‘𝑟) / 𝑝⦌⦋(Base‘𝑝) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (℩𝑞 ∈ 𝑏 (( deg1 ‘𝑟)‘(𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔))) < (( deg1 ‘𝑟)‘𝑔)))) |
36 | 1, 35 | wceq 1539 |
1
wff
quot1p = (𝑟 ∈ V ↦
⦋(Poly1‘𝑟) / 𝑝⦌⦋(Base‘𝑝) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (℩𝑞 ∈ 𝑏 (( deg1 ‘𝑟)‘(𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔))) < (( deg1 ‘𝑟)‘𝑔)))) |