MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-q1p Structured version   Visualization version   GIF version

Definition df-q1p 26060
Description: Define the quotient of two univariate polynomials, which is guaranteed to exist and be unique by ply1divalg 26065. We actually use the reversed version for better harmony with our divisibility df-dvdsr 20270. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Assertion
Ref Expression
df-q1p quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
Distinct variable group:   𝑓,𝑟,𝑔,𝑏,𝑝,𝑞

Detailed syntax breakdown of Definition df-q1p
StepHypRef Expression
1 cq1p 26055 . 2 class quot1p
2 vr . . 3 setvar 𝑟
3 cvv 3436 . . 3 class V
4 vp . . . 4 setvar 𝑝
52cv 1540 . . . . 5 class 𝑟
6 cpl1 22084 . . . . 5 class Poly1
75, 6cfv 6476 . . . 4 class (Poly1𝑟)
8 vb . . . . 5 setvar 𝑏
94cv 1540 . . . . . 6 class 𝑝
10 cbs 17115 . . . . . 6 class Base
119, 10cfv 6476 . . . . 5 class (Base‘𝑝)
12 vf . . . . . 6 setvar 𝑓
13 vg . . . . . 6 setvar 𝑔
148cv 1540 . . . . . 6 class 𝑏
1512cv 1540 . . . . . . . . . 10 class 𝑓
16 vq . . . . . . . . . . . 12 setvar 𝑞
1716cv 1540 . . . . . . . . . . 11 class 𝑞
1813cv 1540 . . . . . . . . . . 11 class 𝑔
19 cmulr 17157 . . . . . . . . . . . 12 class .r
209, 19cfv 6476 . . . . . . . . . . 11 class (.r𝑝)
2117, 18, 20co 7341 . . . . . . . . . 10 class (𝑞(.r𝑝)𝑔)
22 csg 18843 . . . . . . . . . . 11 class -g
239, 22cfv 6476 . . . . . . . . . 10 class (-g𝑝)
2415, 21, 23co 7341 . . . . . . . . 9 class (𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))
25 cdg1 25981 . . . . . . . . . 10 class deg1
265, 25cfv 6476 . . . . . . . . 9 class (deg1𝑟)
2724, 26cfv 6476 . . . . . . . 8 class ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔)))
2818, 26cfv 6476 . . . . . . . 8 class ((deg1𝑟)‘𝑔)
29 clt 11141 . . . . . . . 8 class <
3027, 28, 29wbr 5086 . . . . . . 7 wff ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)
3130, 16, 14crio 7297 . . . . . 6 class (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))
3212, 13, 14, 14, 31cmpo 7343 . . . . 5 class (𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)))
338, 11, 32csb 3845 . . . 4 class (Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)))
344, 7, 33csb 3845 . . 3 class (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔)))
352, 3, 34cmpt 5167 . 2 class (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
361, 35wceq 1541 1 wff quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
Colors of variables: wff setvar class
This definition is referenced by:  q1pval  26082
  Copyright terms: Public domain W3C validator