MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-q1p Structured version   Visualization version   GIF version

Definition df-q1p 25307
Description: Define the quotient of two univariate polynomials, which is guaranteed to exist and be unique by ply1divalg 25312. We actually use the reversed version for better harmony with our divisibility df-dvdsr 19893. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Assertion
Ref Expression
df-q1p quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔))))
Distinct variable group:   𝑓,𝑟,𝑔,𝑏,𝑝,𝑞

Detailed syntax breakdown of Definition df-q1p
StepHypRef Expression
1 cq1p 25302 . 2 class quot1p
2 vr . . 3 setvar 𝑟
3 cvv 3429 . . 3 class V
4 vp . . . 4 setvar 𝑝
52cv 1538 . . . . 5 class 𝑟
6 cpl1 21358 . . . . 5 class Poly1
75, 6cfv 6426 . . . 4 class (Poly1𝑟)
8 vb . . . . 5 setvar 𝑏
94cv 1538 . . . . . 6 class 𝑝
10 cbs 16922 . . . . . 6 class Base
119, 10cfv 6426 . . . . 5 class (Base‘𝑝)
12 vf . . . . . 6 setvar 𝑓
13 vg . . . . . 6 setvar 𝑔
148cv 1538 . . . . . 6 class 𝑏
1512cv 1538 . . . . . . . . . 10 class 𝑓
16 vq . . . . . . . . . . . 12 setvar 𝑞
1716cv 1538 . . . . . . . . . . 11 class 𝑞
1813cv 1538 . . . . . . . . . . 11 class 𝑔
19 cmulr 16973 . . . . . . . . . . . 12 class .r
209, 19cfv 6426 . . . . . . . . . . 11 class (.r𝑝)
2117, 18, 20co 7267 . . . . . . . . . 10 class (𝑞(.r𝑝)𝑔)
22 csg 18589 . . . . . . . . . . 11 class -g
239, 22cfv 6426 . . . . . . . . . 10 class (-g𝑝)
2415, 21, 23co 7267 . . . . . . . . 9 class (𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))
25 cdg1 25226 . . . . . . . . . 10 class deg1
265, 25cfv 6426 . . . . . . . . 9 class ( deg1𝑟)
2724, 26cfv 6426 . . . . . . . 8 class (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔)))
2818, 26cfv 6426 . . . . . . . 8 class (( deg1𝑟)‘𝑔)
29 clt 11019 . . . . . . . 8 class <
3027, 28, 29wbr 5073 . . . . . . 7 wff (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔)
3130, 16, 14crio 7223 . . . . . 6 class (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔))
3212, 13, 14, 14, 31cmpo 7269 . . . . 5 class (𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔)))
338, 11, 32csb 3831 . . . 4 class (Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔)))
344, 7, 33csb 3831 . . 3 class (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔)))
352, 3, 34cmpt 5156 . 2 class (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔))))
361, 35wceq 1539 1 wff quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 (( deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < (( deg1𝑟)‘𝑔))))
Colors of variables: wff setvar class
This definition is referenced by:  q1pval  25328
  Copyright terms: Public domain W3C validator