MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pval Structured version   Visualization version   GIF version

Theorem r1pval 24755
Description: Value of the polynomial remainder function. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
r1pval.e 𝐸 = (rem1p𝑅)
r1pval.p 𝑃 = (Poly1𝑅)
r1pval.b 𝐵 = (Base‘𝑃)
r1pval.q 𝑄 = (quot1p𝑅)
r1pval.t · = (.r𝑃)
r1pval.m = (-g𝑃)
Assertion
Ref Expression
r1pval ((𝐹𝐵𝐺𝐵) → (𝐹𝐸𝐺) = (𝐹 ((𝐹𝑄𝐺) · 𝐺)))

Proof of Theorem r1pval
Dummy variables 𝑏 𝑓 𝑔 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1pval.p . . . . 5 𝑃 = (Poly1𝑅)
2 r1pval.b . . . . 5 𝐵 = (Base‘𝑃)
31, 2elbasfv 16542 . . . 4 (𝐹𝐵𝑅 ∈ V)
43adantr 484 . . 3 ((𝐹𝐵𝐺𝐵) → 𝑅 ∈ V)
5 r1pval.e . . . 4 𝐸 = (rem1p𝑅)
6 fveq2 6659 . . . . . . . . . 10 (𝑟 = 𝑅 → (Poly1𝑟) = (Poly1𝑅))
76, 1syl6eqr 2877 . . . . . . . . 9 (𝑟 = 𝑅 → (Poly1𝑟) = 𝑃)
87fveq2d 6663 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘(Poly1𝑟)) = (Base‘𝑃))
98, 2syl6eqr 2877 . . . . . . 7 (𝑟 = 𝑅 → (Base‘(Poly1𝑟)) = 𝐵)
109csbeq1d 3870 . . . . . 6 (𝑟 = 𝑅(Base‘(Poly1𝑟)) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑓(-g‘(Poly1𝑟))((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔))) = 𝐵 / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑓(-g‘(Poly1𝑟))((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔))))
112fvexi 6673 . . . . . . . 8 𝐵 ∈ V
1211a1i 11 . . . . . . 7 (𝑟 = 𝑅𝐵 ∈ V)
13 simpr 488 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = 𝐵) → 𝑏 = 𝐵)
147fveq2d 6663 . . . . . . . . . . 11 (𝑟 = 𝑅 → (-g‘(Poly1𝑟)) = (-g𝑃))
15 r1pval.m . . . . . . . . . . 11 = (-g𝑃)
1614, 15syl6eqr 2877 . . . . . . . . . 10 (𝑟 = 𝑅 → (-g‘(Poly1𝑟)) = )
17 eqidd 2825 . . . . . . . . . 10 (𝑟 = 𝑅𝑓 = 𝑓)
187fveq2d 6663 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (.r‘(Poly1𝑟)) = (.r𝑃))
19 r1pval.t . . . . . . . . . . . 12 · = (.r𝑃)
2018, 19syl6eqr 2877 . . . . . . . . . . 11 (𝑟 = 𝑅 → (.r‘(Poly1𝑟)) = · )
21 fveq2 6659 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (quot1p𝑟) = (quot1p𝑅))
22 r1pval.q . . . . . . . . . . . . 13 𝑄 = (quot1p𝑅)
2321, 22syl6eqr 2877 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (quot1p𝑟) = 𝑄)
2423oveqd 7163 . . . . . . . . . . 11 (𝑟 = 𝑅 → (𝑓(quot1p𝑟)𝑔) = (𝑓𝑄𝑔))
25 eqidd 2825 . . . . . . . . . . 11 (𝑟 = 𝑅𝑔 = 𝑔)
2620, 24, 25oveq123d 7167 . . . . . . . . . 10 (𝑟 = 𝑅 → ((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔) = ((𝑓𝑄𝑔) · 𝑔))
2716, 17, 26oveq123d 7167 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑓(-g‘(Poly1𝑟))((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔)) = (𝑓 ((𝑓𝑄𝑔) · 𝑔)))
2827adantr 484 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = 𝐵) → (𝑓(-g‘(Poly1𝑟))((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔)) = (𝑓 ((𝑓𝑄𝑔) · 𝑔)))
2913, 13, 28mpoeq123dv 7219 . . . . . . 7 ((𝑟 = 𝑅𝑏 = 𝐵) → (𝑓𝑏, 𝑔𝑏 ↦ (𝑓(-g‘(Poly1𝑟))((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓 ((𝑓𝑄𝑔) · 𝑔))))
3012, 29csbied 3902 . . . . . 6 (𝑟 = 𝑅𝐵 / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑓(-g‘(Poly1𝑟))((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓 ((𝑓𝑄𝑔) · 𝑔))))
3110, 30eqtrd 2859 . . . . 5 (𝑟 = 𝑅(Base‘(Poly1𝑟)) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑓(-g‘(Poly1𝑟))((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓 ((𝑓𝑄𝑔) · 𝑔))))
32 df-r1p 24732 . . . . 5 rem1p = (𝑟 ∈ V ↦ (Base‘(Poly1𝑟)) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑓(-g‘(Poly1𝑟))((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔))))
3311, 11mpoex 7769 . . . . 5 (𝑓𝐵, 𝑔𝐵 ↦ (𝑓 ((𝑓𝑄𝑔) · 𝑔))) ∈ V
3431, 32, 33fvmpt 6757 . . . 4 (𝑅 ∈ V → (rem1p𝑅) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓 ((𝑓𝑄𝑔) · 𝑔))))
355, 34syl5eq 2871 . . 3 (𝑅 ∈ V → 𝐸 = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓 ((𝑓𝑄𝑔) · 𝑔))))
364, 35syl 17 . 2 ((𝐹𝐵𝐺𝐵) → 𝐸 = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓 ((𝑓𝑄𝑔) · 𝑔))))
37 simpl 486 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑓 = 𝐹)
38 oveq12 7155 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓𝑄𝑔) = (𝐹𝑄𝐺))
39 simpr 488 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑔 = 𝐺)
4038, 39oveq12d 7164 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑄𝑔) · 𝑔) = ((𝐹𝑄𝐺) · 𝐺))
4137, 40oveq12d 7164 . . 3 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓 ((𝑓𝑄𝑔) · 𝑔)) = (𝐹 ((𝐹𝑄𝐺) · 𝐺)))
4241adantl 485 . 2 (((𝐹𝐵𝐺𝐵) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑓 ((𝑓𝑄𝑔) · 𝑔)) = (𝐹 ((𝐹𝑄𝐺) · 𝐺)))
43 simpl 486 . 2 ((𝐹𝐵𝐺𝐵) → 𝐹𝐵)
44 simpr 488 . 2 ((𝐹𝐵𝐺𝐵) → 𝐺𝐵)
45 ovexd 7181 . 2 ((𝐹𝐵𝐺𝐵) → (𝐹 ((𝐹𝑄𝐺) · 𝐺)) ∈ V)
4636, 42, 43, 44, 45ovmpod 7292 1 ((𝐹𝐵𝐺𝐵) → (𝐹𝐸𝐺) = (𝐹 ((𝐹𝑄𝐺) · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  Vcvv 3480  csb 3866  cfv 6344  (class class class)co 7146  cmpo 7148  Basecbs 16481  .rcmulr 16564  -gcsg 18103  Poly1cpl1 20340  quot1pcq1p 24726  rem1pcr1p 24727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-ov 7149  df-oprab 7150  df-mpo 7151  df-1st 7681  df-2nd 7682  df-slot 16485  df-base 16487  df-r1p 24732
This theorem is referenced by:  r1pcl  24756  r1pdeglt  24757  r1pid  24758  dvdsr1p  24760  ig1pdvds  24775
  Copyright terms: Public domain W3C validator