MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pval Structured version   Visualization version   GIF version

Theorem r1pval 26063
Description: Value of the polynomial remainder function. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
r1pval.e 𝐸 = (rem1p𝑅)
r1pval.p 𝑃 = (Poly1𝑅)
r1pval.b 𝐵 = (Base‘𝑃)
r1pval.q 𝑄 = (quot1p𝑅)
r1pval.t · = (.r𝑃)
r1pval.m = (-g𝑃)
Assertion
Ref Expression
r1pval ((𝐹𝐵𝐺𝐵) → (𝐹𝐸𝐺) = (𝐹 ((𝐹𝑄𝐺) · 𝐺)))

Proof of Theorem r1pval
Dummy variables 𝑏 𝑓 𝑔 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1pval.p . . . . 5 𝑃 = (Poly1𝑅)
2 r1pval.b . . . . 5 𝐵 = (Base‘𝑃)
31, 2elbasfv 17185 . . . 4 (𝐹𝐵𝑅 ∈ V)
43adantr 480 . . 3 ((𝐹𝐵𝐺𝐵) → 𝑅 ∈ V)
5 r1pval.e . . . 4 𝐸 = (rem1p𝑅)
6 fveq2 6858 . . . . . . . . . 10 (𝑟 = 𝑅 → (Poly1𝑟) = (Poly1𝑅))
76, 1eqtr4di 2782 . . . . . . . . 9 (𝑟 = 𝑅 → (Poly1𝑟) = 𝑃)
87fveq2d 6862 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘(Poly1𝑟)) = (Base‘𝑃))
98, 2eqtr4di 2782 . . . . . . 7 (𝑟 = 𝑅 → (Base‘(Poly1𝑟)) = 𝐵)
109csbeq1d 3866 . . . . . 6 (𝑟 = 𝑅(Base‘(Poly1𝑟)) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑓(-g‘(Poly1𝑟))((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔))) = 𝐵 / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑓(-g‘(Poly1𝑟))((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔))))
112fvexi 6872 . . . . . . . 8 𝐵 ∈ V
1211a1i 11 . . . . . . 7 (𝑟 = 𝑅𝐵 ∈ V)
13 simpr 484 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = 𝐵) → 𝑏 = 𝐵)
147fveq2d 6862 . . . . . . . . . . 11 (𝑟 = 𝑅 → (-g‘(Poly1𝑟)) = (-g𝑃))
15 r1pval.m . . . . . . . . . . 11 = (-g𝑃)
1614, 15eqtr4di 2782 . . . . . . . . . 10 (𝑟 = 𝑅 → (-g‘(Poly1𝑟)) = )
17 eqidd 2730 . . . . . . . . . 10 (𝑟 = 𝑅𝑓 = 𝑓)
187fveq2d 6862 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (.r‘(Poly1𝑟)) = (.r𝑃))
19 r1pval.t . . . . . . . . . . . 12 · = (.r𝑃)
2018, 19eqtr4di 2782 . . . . . . . . . . 11 (𝑟 = 𝑅 → (.r‘(Poly1𝑟)) = · )
21 fveq2 6858 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (quot1p𝑟) = (quot1p𝑅))
22 r1pval.q . . . . . . . . . . . . 13 𝑄 = (quot1p𝑅)
2321, 22eqtr4di 2782 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (quot1p𝑟) = 𝑄)
2423oveqd 7404 . . . . . . . . . . 11 (𝑟 = 𝑅 → (𝑓(quot1p𝑟)𝑔) = (𝑓𝑄𝑔))
25 eqidd 2730 . . . . . . . . . . 11 (𝑟 = 𝑅𝑔 = 𝑔)
2620, 24, 25oveq123d 7408 . . . . . . . . . 10 (𝑟 = 𝑅 → ((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔) = ((𝑓𝑄𝑔) · 𝑔))
2716, 17, 26oveq123d 7408 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑓(-g‘(Poly1𝑟))((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔)) = (𝑓 ((𝑓𝑄𝑔) · 𝑔)))
2827adantr 480 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = 𝐵) → (𝑓(-g‘(Poly1𝑟))((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔)) = (𝑓 ((𝑓𝑄𝑔) · 𝑔)))
2913, 13, 28mpoeq123dv 7464 . . . . . . 7 ((𝑟 = 𝑅𝑏 = 𝐵) → (𝑓𝑏, 𝑔𝑏 ↦ (𝑓(-g‘(Poly1𝑟))((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓 ((𝑓𝑄𝑔) · 𝑔))))
3012, 29csbied 3898 . . . . . 6 (𝑟 = 𝑅𝐵 / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑓(-g‘(Poly1𝑟))((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓 ((𝑓𝑄𝑔) · 𝑔))))
3110, 30eqtrd 2764 . . . . 5 (𝑟 = 𝑅(Base‘(Poly1𝑟)) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑓(-g‘(Poly1𝑟))((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓 ((𝑓𝑄𝑔) · 𝑔))))
32 df-r1p 26039 . . . . 5 rem1p = (𝑟 ∈ V ↦ (Base‘(Poly1𝑟)) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑓(-g‘(Poly1𝑟))((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔))))
3311, 11mpoex 8058 . . . . 5 (𝑓𝐵, 𝑔𝐵 ↦ (𝑓 ((𝑓𝑄𝑔) · 𝑔))) ∈ V
3431, 32, 33fvmpt 6968 . . . 4 (𝑅 ∈ V → (rem1p𝑅) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓 ((𝑓𝑄𝑔) · 𝑔))))
355, 34eqtrid 2776 . . 3 (𝑅 ∈ V → 𝐸 = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓 ((𝑓𝑄𝑔) · 𝑔))))
364, 35syl 17 . 2 ((𝐹𝐵𝐺𝐵) → 𝐸 = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓 ((𝑓𝑄𝑔) · 𝑔))))
37 simpl 482 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑓 = 𝐹)
38 oveq12 7396 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓𝑄𝑔) = (𝐹𝑄𝐺))
39 simpr 484 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑔 = 𝐺)
4038, 39oveq12d 7405 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑄𝑔) · 𝑔) = ((𝐹𝑄𝐺) · 𝐺))
4137, 40oveq12d 7405 . . 3 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓 ((𝑓𝑄𝑔) · 𝑔)) = (𝐹 ((𝐹𝑄𝐺) · 𝐺)))
4241adantl 481 . 2 (((𝐹𝐵𝐺𝐵) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑓 ((𝑓𝑄𝑔) · 𝑔)) = (𝐹 ((𝐹𝑄𝐺) · 𝐺)))
43 simpl 482 . 2 ((𝐹𝐵𝐺𝐵) → 𝐹𝐵)
44 simpr 484 . 2 ((𝐹𝐵𝐺𝐵) → 𝐺𝐵)
45 ovexd 7422 . 2 ((𝐹𝐵𝐺𝐵) → (𝐹 ((𝐹𝑄𝐺) · 𝐺)) ∈ V)
4636, 42, 43, 44, 45ovmpod 7541 1 ((𝐹𝐵𝐺𝐵) → (𝐹𝐸𝐺) = (𝐹 ((𝐹𝑄𝐺) · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  csb 3862  cfv 6511  (class class class)co 7387  cmpo 7389  Basecbs 17179  .rcmulr 17221  -gcsg 18867  Poly1cpl1 22061  quot1pcq1p 26033  rem1pcr1p 26034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-1cn 11126  ax-addcl 11128
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-nn 12187  df-slot 17152  df-ndx 17164  df-base 17180  df-r1p 26039
This theorem is referenced by:  r1pcl  26064  r1pdeglt  26065  r1pid  26066  dvdsr1p  26069  ig1pdvds  26085  q1pdir  33568  q1pvsca  33569  r1pvsca  33570  r1pcyc  33572  r1padd1  33573  irredminply  33706
  Copyright terms: Public domain W3C validator