MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pval Structured version   Visualization version   GIF version

Theorem r1pval 24757
Description: Value of the polynomial remainder function. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
r1pval.e 𝐸 = (rem1p𝑅)
r1pval.p 𝑃 = (Poly1𝑅)
r1pval.b 𝐵 = (Base‘𝑃)
r1pval.q 𝑄 = (quot1p𝑅)
r1pval.t · = (.r𝑃)
r1pval.m = (-g𝑃)
Assertion
Ref Expression
r1pval ((𝐹𝐵𝐺𝐵) → (𝐹𝐸𝐺) = (𝐹 ((𝐹𝑄𝐺) · 𝐺)))

Proof of Theorem r1pval
Dummy variables 𝑏 𝑓 𝑔 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1pval.p . . . . 5 𝑃 = (Poly1𝑅)
2 r1pval.b . . . . 5 𝐵 = (Base‘𝑃)
31, 2elbasfv 16536 . . . 4 (𝐹𝐵𝑅 ∈ V)
43adantr 484 . . 3 ((𝐹𝐵𝐺𝐵) → 𝑅 ∈ V)
5 r1pval.e . . . 4 𝐸 = (rem1p𝑅)
6 fveq2 6645 . . . . . . . . . 10 (𝑟 = 𝑅 → (Poly1𝑟) = (Poly1𝑅))
76, 1eqtr4di 2851 . . . . . . . . 9 (𝑟 = 𝑅 → (Poly1𝑟) = 𝑃)
87fveq2d 6649 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘(Poly1𝑟)) = (Base‘𝑃))
98, 2eqtr4di 2851 . . . . . . 7 (𝑟 = 𝑅 → (Base‘(Poly1𝑟)) = 𝐵)
109csbeq1d 3832 . . . . . 6 (𝑟 = 𝑅(Base‘(Poly1𝑟)) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑓(-g‘(Poly1𝑟))((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔))) = 𝐵 / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑓(-g‘(Poly1𝑟))((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔))))
112fvexi 6659 . . . . . . . 8 𝐵 ∈ V
1211a1i 11 . . . . . . 7 (𝑟 = 𝑅𝐵 ∈ V)
13 simpr 488 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = 𝐵) → 𝑏 = 𝐵)
147fveq2d 6649 . . . . . . . . . . 11 (𝑟 = 𝑅 → (-g‘(Poly1𝑟)) = (-g𝑃))
15 r1pval.m . . . . . . . . . . 11 = (-g𝑃)
1614, 15eqtr4di 2851 . . . . . . . . . 10 (𝑟 = 𝑅 → (-g‘(Poly1𝑟)) = )
17 eqidd 2799 . . . . . . . . . 10 (𝑟 = 𝑅𝑓 = 𝑓)
187fveq2d 6649 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (.r‘(Poly1𝑟)) = (.r𝑃))
19 r1pval.t . . . . . . . . . . . 12 · = (.r𝑃)
2018, 19eqtr4di 2851 . . . . . . . . . . 11 (𝑟 = 𝑅 → (.r‘(Poly1𝑟)) = · )
21 fveq2 6645 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (quot1p𝑟) = (quot1p𝑅))
22 r1pval.q . . . . . . . . . . . . 13 𝑄 = (quot1p𝑅)
2321, 22eqtr4di 2851 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (quot1p𝑟) = 𝑄)
2423oveqd 7152 . . . . . . . . . . 11 (𝑟 = 𝑅 → (𝑓(quot1p𝑟)𝑔) = (𝑓𝑄𝑔))
25 eqidd 2799 . . . . . . . . . . 11 (𝑟 = 𝑅𝑔 = 𝑔)
2620, 24, 25oveq123d 7156 . . . . . . . . . 10 (𝑟 = 𝑅 → ((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔) = ((𝑓𝑄𝑔) · 𝑔))
2716, 17, 26oveq123d 7156 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑓(-g‘(Poly1𝑟))((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔)) = (𝑓 ((𝑓𝑄𝑔) · 𝑔)))
2827adantr 484 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = 𝐵) → (𝑓(-g‘(Poly1𝑟))((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔)) = (𝑓 ((𝑓𝑄𝑔) · 𝑔)))
2913, 13, 28mpoeq123dv 7208 . . . . . . 7 ((𝑟 = 𝑅𝑏 = 𝐵) → (𝑓𝑏, 𝑔𝑏 ↦ (𝑓(-g‘(Poly1𝑟))((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓 ((𝑓𝑄𝑔) · 𝑔))))
3012, 29csbied 3864 . . . . . 6 (𝑟 = 𝑅𝐵 / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑓(-g‘(Poly1𝑟))((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓 ((𝑓𝑄𝑔) · 𝑔))))
3110, 30eqtrd 2833 . . . . 5 (𝑟 = 𝑅(Base‘(Poly1𝑟)) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑓(-g‘(Poly1𝑟))((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓 ((𝑓𝑄𝑔) · 𝑔))))
32 df-r1p 24734 . . . . 5 rem1p = (𝑟 ∈ V ↦ (Base‘(Poly1𝑟)) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑓(-g‘(Poly1𝑟))((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔))))
3311, 11mpoex 7760 . . . . 5 (𝑓𝐵, 𝑔𝐵 ↦ (𝑓 ((𝑓𝑄𝑔) · 𝑔))) ∈ V
3431, 32, 33fvmpt 6745 . . . 4 (𝑅 ∈ V → (rem1p𝑅) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓 ((𝑓𝑄𝑔) · 𝑔))))
355, 34syl5eq 2845 . . 3 (𝑅 ∈ V → 𝐸 = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓 ((𝑓𝑄𝑔) · 𝑔))))
364, 35syl 17 . 2 ((𝐹𝐵𝐺𝐵) → 𝐸 = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓 ((𝑓𝑄𝑔) · 𝑔))))
37 simpl 486 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑓 = 𝐹)
38 oveq12 7144 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓𝑄𝑔) = (𝐹𝑄𝐺))
39 simpr 488 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑔 = 𝐺)
4038, 39oveq12d 7153 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑄𝑔) · 𝑔) = ((𝐹𝑄𝐺) · 𝐺))
4137, 40oveq12d 7153 . . 3 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓 ((𝑓𝑄𝑔) · 𝑔)) = (𝐹 ((𝐹𝑄𝐺) · 𝐺)))
4241adantl 485 . 2 (((𝐹𝐵𝐺𝐵) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑓 ((𝑓𝑄𝑔) · 𝑔)) = (𝐹 ((𝐹𝑄𝐺) · 𝐺)))
43 simpl 486 . 2 ((𝐹𝐵𝐺𝐵) → 𝐹𝐵)
44 simpr 488 . 2 ((𝐹𝐵𝐺𝐵) → 𝐺𝐵)
45 ovexd 7170 . 2 ((𝐹𝐵𝐺𝐵) → (𝐹 ((𝐹𝑄𝐺) · 𝐺)) ∈ V)
4636, 42, 43, 44, 45ovmpod 7281 1 ((𝐹𝐵𝐺𝐵) → (𝐹𝐸𝐺) = (𝐹 ((𝐹𝑄𝐺) · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  csb 3828  cfv 6324  (class class class)co 7135  cmpo 7137  Basecbs 16475  .rcmulr 16558  -gcsg 18097  Poly1cpl1 20806  quot1pcq1p 24728  rem1pcr1p 24729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-slot 16479  df-base 16481  df-r1p 24734
This theorem is referenced by:  r1pcl  24758  r1pdeglt  24759  r1pid  24760  dvdsr1p  24762  ig1pdvds  24777
  Copyright terms: Public domain W3C validator