Detailed syntax breakdown of Definition df-rediv
| Step | Hyp | Ref
| Expression |
| 1 | | crediv 42423 |
. 2
class
/ℝ |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | vy |
. . 3
setvar 𝑦 |
| 4 | | cr 11073 |
. . 3
class
ℝ |
| 5 | | cc0 11074 |
. . . . 5
class
0 |
| 6 | 5 | csn 4591 |
. . . 4
class
{0} |
| 7 | 4, 6 | cdif 3913 |
. . 3
class (ℝ
∖ {0}) |
| 8 | 3 | cv 1539 |
. . . . . 6
class 𝑦 |
| 9 | | vz |
. . . . . . 7
setvar 𝑧 |
| 10 | 9 | cv 1539 |
. . . . . 6
class 𝑧 |
| 11 | | cmul 11079 |
. . . . . 6
class
· |
| 12 | 8, 10, 11 | co 7389 |
. . . . 5
class (𝑦 · 𝑧) |
| 13 | 2 | cv 1539 |
. . . . 5
class 𝑥 |
| 14 | 12, 13 | wceq 1540 |
. . . 4
wff (𝑦 · 𝑧) = 𝑥 |
| 15 | 14, 9, 4 | crio 7345 |
. . 3
class
(℩𝑧
∈ ℝ (𝑦 ·
𝑧) = 𝑥) |
| 16 | 2, 3, 4, 7, 15 | cmpo 7391 |
. 2
class (𝑥 ∈ ℝ, 𝑦 ∈ (ℝ ∖ {0})
↦ (℩𝑧
∈ ℝ (𝑦 ·
𝑧) = 𝑥)) |
| 17 | 1, 16 | wceq 1540 |
1
wff
/ℝ = (𝑥
∈ ℝ, 𝑦 ∈
(ℝ ∖ {0}) ↦ (℩𝑧 ∈ ℝ (𝑦 · 𝑧) = 𝑥)) |