Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-rediv Structured version   Visualization version   GIF version

Definition df-rediv 42434
Description: Define division between real numbers. This operator saves ax-mulcom 11092 over df-div 11797 in certain situations. (Contributed by SN, 25-Nov-2025.)
Assertion
Ref Expression
df-rediv / = (𝑥 ∈ ℝ, 𝑦 ∈ (ℝ ∖ {0}) ↦ (𝑧 ∈ ℝ (𝑦 · 𝑧) = 𝑥))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-rediv
StepHypRef Expression
1 crediv 42433 . 2 class /
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cr 11027 . . 3 class
5 cc0 11028 . . . . 5 class 0
65csn 4579 . . . 4 class {0}
74, 6cdif 3902 . . 3 class (ℝ ∖ {0})
83cv 1539 . . . . . 6 class 𝑦
9 vz . . . . . . 7 setvar 𝑧
109cv 1539 . . . . . 6 class 𝑧
11 cmul 11033 . . . . . 6 class ·
128, 10, 11co 7353 . . . . 5 class (𝑦 · 𝑧)
132cv 1539 . . . . 5 class 𝑥
1412, 13wceq 1540 . . . 4 wff (𝑦 · 𝑧) = 𝑥
1514, 9, 4crio 7309 . . 3 class (𝑧 ∈ ℝ (𝑦 · 𝑧) = 𝑥)
162, 3, 4, 7, 15cmpo 7355 . 2 class (𝑥 ∈ ℝ, 𝑦 ∈ (ℝ ∖ {0}) ↦ (𝑧 ∈ ℝ (𝑦 · 𝑧) = 𝑥))
171, 16wceq 1540 1 wff / = (𝑥 ∈ ℝ, 𝑦 ∈ (ℝ ∖ {0}) ↦ (𝑧 ∈ ℝ (𝑦 · 𝑧) = 𝑥))
Colors of variables: wff setvar class
This definition is referenced by:  redivvald  42435
  Copyright terms: Public domain W3C validator