MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-div Structured version   Visualization version   GIF version

Definition df-div 11873
Description: Define division. Theorem divmuli 11969 relates it to multiplication, and divcli 11957 and redivcli 11982 prove its closure laws. (Contributed by NM, 2-Feb-1995.) Use divval 11875 instead. (Revised by Mario Carneiro, 1-Apr-2014.) (New usage is discouraged.)
Assertion
Ref Expression
df-div / = (๐‘ฅ โˆˆ โ„‚, ๐‘ฆ โˆˆ (โ„‚ โˆ– {0}) โ†ฆ (โ„ฉ๐‘ง โˆˆ โ„‚ (๐‘ฆ ยท ๐‘ง) = ๐‘ฅ))
Distinct variable group:   ๐‘ฅ,๐‘ฆ,๐‘ง

Detailed syntax breakdown of Definition df-div
StepHypRef Expression
1 cdiv 11872 . 2 class /
2 vx . . 3 setvar ๐‘ฅ
3 vy . . 3 setvar ๐‘ฆ
4 cc 11107 . . 3 class โ„‚
5 cc0 11109 . . . . 5 class 0
65csn 4623 . . . 4 class {0}
74, 6cdif 3940 . . 3 class (โ„‚ โˆ– {0})
83cv 1532 . . . . . 6 class ๐‘ฆ
9 vz . . . . . . 7 setvar ๐‘ง
109cv 1532 . . . . . 6 class ๐‘ง
11 cmul 11114 . . . . . 6 class ยท
128, 10, 11co 7404 . . . . 5 class (๐‘ฆ ยท ๐‘ง)
132cv 1532 . . . . 5 class ๐‘ฅ
1412, 13wceq 1533 . . . 4 wff (๐‘ฆ ยท ๐‘ง) = ๐‘ฅ
1514, 9, 4crio 7359 . . 3 class (โ„ฉ๐‘ง โˆˆ โ„‚ (๐‘ฆ ยท ๐‘ง) = ๐‘ฅ)
162, 3, 4, 7, 15cmpo 7406 . 2 class (๐‘ฅ โˆˆ โ„‚, ๐‘ฆ โˆˆ (โ„‚ โˆ– {0}) โ†ฆ (โ„ฉ๐‘ง โˆˆ โ„‚ (๐‘ฆ ยท ๐‘ง) = ๐‘ฅ))
171, 16wceq 1533 1 wff / = (๐‘ฅ โˆˆ โ„‚, ๐‘ฆ โˆˆ (โ„‚ โˆ– {0}) โ†ฆ (โ„ฉ๐‘ง โˆˆ โ„‚ (๐‘ฆ ยท ๐‘ง) = ๐‘ฅ))
Colors of variables: wff setvar class
This definition is referenced by:  1div0  11874  divval  11875  elq  12935  cnflddiv  21285  cnflddivOLD  21286  divcnOLD  24735  divcn  24737  1div0apr  30226
  Copyright terms: Public domain W3C validator