| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-div | Structured version Visualization version GIF version | ||
| Description: Define division. Theorem divmuli 11936 relates it to multiplication, and divcli 11924 and redivcli 11949 prove its closure laws. (Contributed by NM, 2-Feb-1995.) Use divval 11839 instead. (Revised by Mario Carneiro, 1-Apr-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-div | ⊢ / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdiv 11835 | . 2 class / | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cc 11066 | . . 3 class ℂ | |
| 5 | cc0 11068 | . . . . 5 class 0 | |
| 6 | 5 | csn 4589 | . . . 4 class {0} |
| 7 | 4, 6 | cdif 3911 | . . 3 class (ℂ ∖ {0}) |
| 8 | 3 | cv 1539 | . . . . . 6 class 𝑦 |
| 9 | vz | . . . . . . 7 setvar 𝑧 | |
| 10 | 9 | cv 1539 | . . . . . 6 class 𝑧 |
| 11 | cmul 11073 | . . . . . 6 class · | |
| 12 | 8, 10, 11 | co 7387 | . . . . 5 class (𝑦 · 𝑧) |
| 13 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 14 | 12, 13 | wceq 1540 | . . . 4 wff (𝑦 · 𝑧) = 𝑥 |
| 15 | 14, 9, 4 | crio 7343 | . . 3 class (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) |
| 16 | 2, 3, 4, 7, 15 | cmpo 7389 | . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) |
| 17 | 1, 16 | wceq 1540 | 1 wff / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: 1div0 11837 1div0OLD 11838 divval 11839 elq 12909 cnflddiv 21312 cnflddivOLD 21313 divcnOLD 24757 divcn 24759 1div0apr 30397 |
| Copyright terms: Public domain | W3C validator |