| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > redivvald | Structured version Visualization version GIF version | ||
| Description: Value of real division, which is the (unique) real 𝑥 such that (𝐵 · 𝑥) = 𝐴. (Contributed by SN, 25-Nov-2025.) |
| Ref | Expression |
|---|---|
| redivvald.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| redivvald.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| redivvald.z | ⊢ (𝜑 → 𝐵 ≠ 0) |
| Ref | Expression |
|---|---|
| redivvald | ⊢ (𝜑 → (𝐴 /ℝ 𝐵) = (℩𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | redivvald.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | redivvald.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | redivvald.z | . . 3 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 4 | 2, 3 | eldifsnd 4747 | . 2 ⊢ (𝜑 → 𝐵 ∈ (ℝ ∖ {0})) |
| 5 | eqeq2 2741 | . . . 4 ⊢ (𝑧 = 𝐴 → ((𝑦 · 𝑥) = 𝑧 ↔ (𝑦 · 𝑥) = 𝐴)) | |
| 6 | 5 | riotabidv 7328 | . . 3 ⊢ (𝑧 = 𝐴 → (℩𝑥 ∈ ℝ (𝑦 · 𝑥) = 𝑧) = (℩𝑥 ∈ ℝ (𝑦 · 𝑥) = 𝐴)) |
| 7 | oveq1 7376 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 · 𝑥) = (𝐵 · 𝑥)) | |
| 8 | 7 | eqeq1d 2731 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝑦 · 𝑥) = 𝐴 ↔ (𝐵 · 𝑥) = 𝐴)) |
| 9 | 8 | riotabidv 7328 | . . 3 ⊢ (𝑦 = 𝐵 → (℩𝑥 ∈ ℝ (𝑦 · 𝑥) = 𝐴) = (℩𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)) |
| 10 | df-rediv 42402 | . . 3 ⊢ /ℝ = (𝑧 ∈ ℝ, 𝑦 ∈ (ℝ ∖ {0}) ↦ (℩𝑥 ∈ ℝ (𝑦 · 𝑥) = 𝑧)) | |
| 11 | riotaex 7330 | . . 3 ⊢ (℩𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) ∈ V | |
| 12 | 6, 9, 10, 11 | ovmpo 7529 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ (ℝ ∖ {0})) → (𝐴 /ℝ 𝐵) = (℩𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)) |
| 13 | 1, 4, 12 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 /ℝ 𝐵) = (℩𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3908 {csn 4585 ℩crio 7325 (class class class)co 7369 ℝcr 11043 0cc0 11044 · cmul 11049 /ℝ crediv 42401 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-rediv 42402 |
| This theorem is referenced by: sn-redivcld 42405 redivmuld 42406 |
| Copyright terms: Public domain | W3C validator |