Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  redivvald Structured version   Visualization version   GIF version

Theorem redivvald 42425
Description: Value of real division, which is the (unique) real 𝑥 such that (𝐵 · 𝑥) = 𝐴. (Contributed by SN, 25-Nov-2025.)
Hypotheses
Ref Expression
redivvald.a (𝜑𝐴 ∈ ℝ)
redivvald.b (𝜑𝐵 ∈ ℝ)
redivvald.z (𝜑𝐵 ≠ 0)
Assertion
Ref Expression
redivvald (𝜑 → (𝐴 / 𝐵) = (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem redivvald
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 redivvald.a . 2 (𝜑𝐴 ∈ ℝ)
2 redivvald.b . . 3 (𝜑𝐵 ∈ ℝ)
3 redivvald.z . . 3 (𝜑𝐵 ≠ 0)
42, 3eldifsnd 4753 . 2 (𝜑𝐵 ∈ (ℝ ∖ {0}))
5 eqeq2 2742 . . . 4 (𝑧 = 𝐴 → ((𝑦 · 𝑥) = 𝑧 ↔ (𝑦 · 𝑥) = 𝐴))
65riotabidv 7348 . . 3 (𝑧 = 𝐴 → (𝑥 ∈ ℝ (𝑦 · 𝑥) = 𝑧) = (𝑥 ∈ ℝ (𝑦 · 𝑥) = 𝐴))
7 oveq1 7396 . . . . 5 (𝑦 = 𝐵 → (𝑦 · 𝑥) = (𝐵 · 𝑥))
87eqeq1d 2732 . . . 4 (𝑦 = 𝐵 → ((𝑦 · 𝑥) = 𝐴 ↔ (𝐵 · 𝑥) = 𝐴))
98riotabidv 7348 . . 3 (𝑦 = 𝐵 → (𝑥 ∈ ℝ (𝑦 · 𝑥) = 𝐴) = (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴))
10 df-rediv 42424 . . 3 / = (𝑧 ∈ ℝ, 𝑦 ∈ (ℝ ∖ {0}) ↦ (𝑥 ∈ ℝ (𝑦 · 𝑥) = 𝑧))
11 riotaex 7350 . . 3 (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) ∈ V
126, 9, 10, 11ovmpo 7551 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ (ℝ ∖ {0})) → (𝐴 / 𝐵) = (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴))
131, 4, 12syl2anc 584 1 (𝜑 → (𝐴 / 𝐵) = (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2926  cdif 3913  {csn 4591  crio 7345  (class class class)co 7389  cr 11073  0cc0 11074   · cmul 11079   / crediv 42423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-iota 6466  df-fun 6515  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-rediv 42424
This theorem is referenced by:  sn-redivcld  42427  redivmuld  42428
  Copyright terms: Public domain W3C validator