| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > redivvald | Structured version Visualization version GIF version | ||
| Description: Value of real division, which is the (unique) real 𝑥 such that (𝐵 · 𝑥) = 𝐴. (Contributed by SN, 25-Nov-2025.) |
| Ref | Expression |
|---|---|
| redivvald.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| redivvald.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| redivvald.z | ⊢ (𝜑 → 𝐵 ≠ 0) |
| Ref | Expression |
|---|---|
| redivvald | ⊢ (𝜑 → (𝐴 /ℝ 𝐵) = (℩𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | redivvald.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | redivvald.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | redivvald.z | . . 3 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 4 | 2, 3 | eldifsnd 4734 | . 2 ⊢ (𝜑 → 𝐵 ∈ (ℝ ∖ {0})) |
| 5 | eqeq2 2743 | . . . 4 ⊢ (𝑧 = 𝐴 → ((𝑦 · 𝑥) = 𝑧 ↔ (𝑦 · 𝑥) = 𝐴)) | |
| 6 | 5 | riotabidv 7300 | . . 3 ⊢ (𝑧 = 𝐴 → (℩𝑥 ∈ ℝ (𝑦 · 𝑥) = 𝑧) = (℩𝑥 ∈ ℝ (𝑦 · 𝑥) = 𝐴)) |
| 7 | oveq1 7348 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 · 𝑥) = (𝐵 · 𝑥)) | |
| 8 | 7 | eqeq1d 2733 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝑦 · 𝑥) = 𝐴 ↔ (𝐵 · 𝑥) = 𝐴)) |
| 9 | 8 | riotabidv 7300 | . . 3 ⊢ (𝑦 = 𝐵 → (℩𝑥 ∈ ℝ (𝑦 · 𝑥) = 𝐴) = (℩𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)) |
| 10 | df-rediv 42474 | . . 3 ⊢ /ℝ = (𝑧 ∈ ℝ, 𝑦 ∈ (ℝ ∖ {0}) ↦ (℩𝑥 ∈ ℝ (𝑦 · 𝑥) = 𝑧)) | |
| 11 | riotaex 7302 | . . 3 ⊢ (℩𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) ∈ V | |
| 12 | 6, 9, 10, 11 | ovmpo 7501 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ (ℝ ∖ {0})) → (𝐴 /ℝ 𝐵) = (℩𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)) |
| 13 | 1, 4, 12 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 /ℝ 𝐵) = (℩𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3894 {csn 4571 ℩crio 7297 (class class class)co 7341 ℝcr 11000 0cc0 11001 · cmul 11006 /ℝ crediv 42473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-rediv 42474 |
| This theorem is referenced by: sn-redivcld 42477 redivmuld 42478 |
| Copyright terms: Public domain | W3C validator |