Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  redivvald Structured version   Visualization version   GIF version

Theorem redivvald 42612
Description: Value of real division, which is the (unique) real 𝑥 such that (𝐵 · 𝑥) = 𝐴. (Contributed by SN, 25-Nov-2025.)
Hypotheses
Ref Expression
redivvald.a (𝜑𝐴 ∈ ℝ)
redivvald.b (𝜑𝐵 ∈ ℝ)
redivvald.z (𝜑𝐵 ≠ 0)
Assertion
Ref Expression
redivvald (𝜑 → (𝐴 / 𝐵) = (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem redivvald
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 redivvald.a . 2 (𝜑𝐴 ∈ ℝ)
2 redivvald.b . . 3 (𝜑𝐵 ∈ ℝ)
3 redivvald.z . . 3 (𝜑𝐵 ≠ 0)
42, 3eldifsnd 4740 . 2 (𝜑𝐵 ∈ (ℝ ∖ {0}))
5 eqeq2 2745 . . . 4 (𝑧 = 𝐴 → ((𝑦 · 𝑥) = 𝑧 ↔ (𝑦 · 𝑥) = 𝐴))
65riotabidv 7314 . . 3 (𝑧 = 𝐴 → (𝑥 ∈ ℝ (𝑦 · 𝑥) = 𝑧) = (𝑥 ∈ ℝ (𝑦 · 𝑥) = 𝐴))
7 oveq1 7362 . . . . 5 (𝑦 = 𝐵 → (𝑦 · 𝑥) = (𝐵 · 𝑥))
87eqeq1d 2735 . . . 4 (𝑦 = 𝐵 → ((𝑦 · 𝑥) = 𝐴 ↔ (𝐵 · 𝑥) = 𝐴))
98riotabidv 7314 . . 3 (𝑦 = 𝐵 → (𝑥 ∈ ℝ (𝑦 · 𝑥) = 𝐴) = (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴))
10 df-rediv 42611 . . 3 / = (𝑧 ∈ ℝ, 𝑦 ∈ (ℝ ∖ {0}) ↦ (𝑥 ∈ ℝ (𝑦 · 𝑥) = 𝑧))
11 riotaex 7316 . . 3 (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) ∈ V
126, 9, 10, 11ovmpo 7515 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ (ℝ ∖ {0})) → (𝐴 / 𝐵) = (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴))
131, 4, 12syl2anc 584 1 (𝜑 → (𝐴 / 𝐵) = (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wne 2929  cdif 3895  {csn 4577  crio 7311  (class class class)co 7355  cr 11016  0cc0 11017   · cmul 11022   / crediv 42610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-rediv 42611
This theorem is referenced by:  sn-redivcld  42614  redivmuld  42615
  Copyright terms: Public domain W3C validator