| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax-mulcom | Structured version Visualization version GIF version | ||
| Description: Multiplication of complex numbers is commutative. Axiom 8 of 22 for real and complex numbers, justified by Theorem axmulcom 11195. Proofs should normally use mulcom 11241 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| ax-mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 11153 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2108 | . . 3 wff 𝐴 ∈ ℂ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2108 | . . 3 wff 𝐵 ∈ ℂ |
| 6 | 3, 5 | wa 395 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) |
| 7 | cmul 11160 | . . . 4 class · | |
| 8 | 1, 4, 7 | co 7431 | . . 3 class (𝐴 · 𝐵) |
| 9 | 4, 1, 7 | co 7431 | . . 3 class (𝐵 · 𝐴) |
| 10 | 8, 9 | wceq 1540 | . 2 wff (𝐴 · 𝐵) = (𝐵 · 𝐴) |
| 11 | 6, 10 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: mulcom 11241 |
| Copyright terms: Public domain | W3C validator |