Detailed syntax breakdown of Definition df-redunds
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | credunds 38203 | . 2
class 
Redunds | 
| 2 |  | vx | . . . . . . 7
setvar 𝑥 | 
| 3 | 2 | cv 1538 | . . . . . 6
class 𝑥 | 
| 4 |  | vy | . . . . . . 7
setvar 𝑦 | 
| 5 | 4 | cv 1538 | . . . . . 6
class 𝑦 | 
| 6 | 3, 5 | wss 3950 | . . . . 5
wff 𝑥 ⊆ 𝑦 | 
| 7 |  | vz | . . . . . . . 8
setvar 𝑧 | 
| 8 | 7 | cv 1538 | . . . . . . 7
class 𝑧 | 
| 9 | 3, 8 | cin 3949 | . . . . . 6
class (𝑥 ∩ 𝑧) | 
| 10 | 5, 8 | cin 3949 | . . . . . 6
class (𝑦 ∩ 𝑧) | 
| 11 | 9, 10 | wceq 1539 | . . . . 5
wff (𝑥 ∩ 𝑧) = (𝑦 ∩ 𝑧) | 
| 12 | 6, 11 | wa 395 | . . . 4
wff (𝑥 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑧) = (𝑦 ∩ 𝑧)) | 
| 13 | 12, 4, 7, 2 | coprab 7433 | . . 3
class
{〈〈𝑦,
𝑧〉, 𝑥〉 ∣ (𝑥 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑧) = (𝑦 ∩ 𝑧))} | 
| 14 | 13 | ccnv 5683 | . 2
class ◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ (𝑥 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑧) = (𝑦 ∩ 𝑧))} | 
| 15 | 1, 14 | wceq 1539 | 1
wff  Redunds =
◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ (𝑥 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑧) = (𝑦 ∩ 𝑧))} |