![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brredunds | Structured version Visualization version GIF version |
Description: Binary relation on the class of all redundant sets. (Contributed by Peter Mazsa, 25-Oct-2022.) |
Ref | Expression |
---|---|
brredunds | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 Redunds 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq12 4009 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝐵)) | |
2 | 1 | 3adant3 1131 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑥 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝐵)) |
3 | ineq12 4207 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑧 = 𝐶) → (𝑥 ∩ 𝑧) = (𝐴 ∩ 𝐶)) | |
4 | 3 | 3adant2 1130 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑥 ∩ 𝑧) = (𝐴 ∩ 𝐶)) |
5 | ineq12 4207 | . . . . 5 ⊢ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑦 ∩ 𝑧) = (𝐵 ∩ 𝐶)) | |
6 | 5 | 3adant1 1129 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑦 ∩ 𝑧) = (𝐵 ∩ 𝐶)) |
7 | 4, 6 | eqeq12d 2747 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ((𝑥 ∩ 𝑧) = (𝑦 ∩ 𝑧) ↔ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶))) |
8 | 2, 7 | anbi12d 630 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ((𝑥 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑧) = (𝑦 ∩ 𝑧)) ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)))) |
9 | df-redunds 37957 | . 2 ⊢ Redunds = ◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ (𝑥 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑧) = (𝑦 ∩ 𝑧))} | |
10 | 8, 9 | brcnvrabga 37675 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 Redunds 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∩ cin 3947 ⊆ wss 3948 〈cop 4634 class class class wbr 5148 Redunds credunds 37527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-oprab 7416 df-redunds 37957 |
This theorem is referenced by: brredundsredund 37961 |
Copyright terms: Public domain | W3C validator |