Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brredunds Structured version   Visualization version   GIF version

Theorem brredunds 38582
Description: Binary relation on the class of all redundant sets. (Contributed by Peter Mazsa, 25-Oct-2022.)
Assertion
Ref Expression
brredunds ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 Redunds ⟨𝐵, 𝐶⟩ ↔ (𝐴𝐵 ∧ (𝐴𝐶) = (𝐵𝐶))))

Proof of Theorem brredunds
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq12 4036 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑦𝐴𝐵))
213adant3 1132 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑥𝑦𝐴𝐵))
3 ineq12 4236 . . . . 5 ((𝑥 = 𝐴𝑧 = 𝐶) → (𝑥𝑧) = (𝐴𝐶))
433adant2 1131 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑥𝑧) = (𝐴𝐶))
5 ineq12 4236 . . . . 5 ((𝑦 = 𝐵𝑧 = 𝐶) → (𝑦𝑧) = (𝐵𝐶))
653adant1 1130 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑦𝑧) = (𝐵𝐶))
74, 6eqeq12d 2756 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → ((𝑥𝑧) = (𝑦𝑧) ↔ (𝐴𝐶) = (𝐵𝐶)))
82, 7anbi12d 631 . 2 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → ((𝑥𝑦 ∧ (𝑥𝑧) = (𝑦𝑧)) ↔ (𝐴𝐵 ∧ (𝐴𝐶) = (𝐵𝐶))))
9 df-redunds 38579 . 2 Redunds = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ (𝑥𝑦 ∧ (𝑥𝑧) = (𝑦𝑧))}
108, 9brcnvrabga 38298 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 Redunds ⟨𝐵, 𝐶⟩ ↔ (𝐴𝐵 ∧ (𝐴𝐶) = (𝐵𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  cin 3975  wss 3976  cop 4654   class class class wbr 5166   Redunds credunds 38155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-oprab 7452  df-redunds 38579
This theorem is referenced by:  brredundsredund  38583
  Copyright terms: Public domain W3C validator