![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brredunds | Structured version Visualization version GIF version |
Description: Binary relation on the class of all redundant sets. (Contributed by Peter Mazsa, 25-Oct-2022.) |
Ref | Expression |
---|---|
brredunds | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 Redunds ⟨𝐵, 𝐶⟩ ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq12 3976 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝐵)) | |
2 | 1 | 3adant3 1133 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑥 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝐵)) |
3 | ineq12 4172 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑧 = 𝐶) → (𝑥 ∩ 𝑧) = (𝐴 ∩ 𝐶)) | |
4 | 3 | 3adant2 1132 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑥 ∩ 𝑧) = (𝐴 ∩ 𝐶)) |
5 | ineq12 4172 | . . . . 5 ⊢ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑦 ∩ 𝑧) = (𝐵 ∩ 𝐶)) | |
6 | 5 | 3adant1 1131 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑦 ∩ 𝑧) = (𝐵 ∩ 𝐶)) |
7 | 4, 6 | eqeq12d 2753 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ((𝑥 ∩ 𝑧) = (𝑦 ∩ 𝑧) ↔ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶))) |
8 | 2, 7 | anbi12d 632 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ((𝑥 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑧) = (𝑦 ∩ 𝑧)) ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)))) |
9 | df-redunds 37114 | . 2 ⊢ Redunds = ◡{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ (𝑥 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑧) = (𝑦 ∩ 𝑧))} | |
10 | 8, 9 | brcnvrabga 36832 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 Redunds ⟨𝐵, 𝐶⟩ ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∩ cin 3914 ⊆ wss 3915 ⟨cop 4597 class class class wbr 5110 Redunds credunds 36683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-br 5111 df-opab 5173 df-xp 5644 df-rel 5645 df-cnv 5646 df-oprab 7366 df-redunds 37114 |
This theorem is referenced by: brredundsredund 37118 |
Copyright terms: Public domain | W3C validator |