Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brredunds Structured version   Visualization version   GIF version

Theorem brredunds 38732
Description: Binary relation on the class of all redundant sets. (Contributed by Peter Mazsa, 25-Oct-2022.)
Assertion
Ref Expression
brredunds ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 Redunds ⟨𝐵, 𝐶⟩ ↔ (𝐴𝐵 ∧ (𝐴𝐶) = (𝐵𝐶))))

Proof of Theorem brredunds
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq12 3957 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑦𝐴𝐵))
213adant3 1132 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑥𝑦𝐴𝐵))
3 ineq12 4162 . . . . 5 ((𝑥 = 𝐴𝑧 = 𝐶) → (𝑥𝑧) = (𝐴𝐶))
433adant2 1131 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑥𝑧) = (𝐴𝐶))
5 ineq12 4162 . . . . 5 ((𝑦 = 𝐵𝑧 = 𝐶) → (𝑦𝑧) = (𝐵𝐶))
653adant1 1130 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑦𝑧) = (𝐵𝐶))
74, 6eqeq12d 2747 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → ((𝑥𝑧) = (𝑦𝑧) ↔ (𝐴𝐶) = (𝐵𝐶)))
82, 7anbi12d 632 . 2 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → ((𝑥𝑦 ∧ (𝑥𝑧) = (𝑦𝑧)) ↔ (𝐴𝐵 ∧ (𝐴𝐶) = (𝐵𝐶))))
9 df-redunds 38729 . 2 Redunds = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ (𝑥𝑦 ∧ (𝑥𝑧) = (𝑦𝑧))}
108, 9brcnvrabga 38384 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴 Redunds ⟨𝐵, 𝐶⟩ ↔ (𝐴𝐵 ∧ (𝐴𝐶) = (𝐵𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  cin 3896  wss 3897  cop 4579   class class class wbr 5089   Redunds credunds 38252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-oprab 7350  df-redunds 38729
This theorem is referenced by:  brredundsredund  38733
  Copyright terms: Public domain W3C validator