![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brredunds | Structured version Visualization version GIF version |
Description: Binary relation on the class of all redundant sets. (Contributed by Peter Mazsa, 25-Oct-2022.) |
Ref | Expression |
---|---|
brredunds | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 Redunds ⟨𝐵, 𝐶⟩ ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq12 4004 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝐵)) | |
2 | 1 | 3adant3 1129 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑥 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝐵)) |
3 | ineq12 4202 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑧 = 𝐶) → (𝑥 ∩ 𝑧) = (𝐴 ∩ 𝐶)) | |
4 | 3 | 3adant2 1128 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑥 ∩ 𝑧) = (𝐴 ∩ 𝐶)) |
5 | ineq12 4202 | . . . . 5 ⊢ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑦 ∩ 𝑧) = (𝐵 ∩ 𝐶)) | |
6 | 5 | 3adant1 1127 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑦 ∩ 𝑧) = (𝐵 ∩ 𝐶)) |
7 | 4, 6 | eqeq12d 2742 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ((𝑥 ∩ 𝑧) = (𝑦 ∩ 𝑧) ↔ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶))) |
8 | 2, 7 | anbi12d 630 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ((𝑥 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑧) = (𝑦 ∩ 𝑧)) ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)))) |
9 | df-redunds 38006 | . 2 ⊢ Redunds = ◡{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ (𝑥 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑧) = (𝑦 ∩ 𝑧))} | |
10 | 8, 9 | brcnvrabga 37724 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 Redunds ⟨𝐵, 𝐶⟩ ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∩ cin 3942 ⊆ wss 3943 ⟨cop 4629 class class class wbr 5141 Redunds credunds 37576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-xp 5675 df-rel 5676 df-cnv 5677 df-oprab 7409 df-redunds 38006 |
This theorem is referenced by: brredundsredund 38010 |
Copyright terms: Public domain | W3C validator |