| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brredunds | Structured version Visualization version GIF version | ||
| Description: Binary relation on the class of all redundant sets. (Contributed by Peter Mazsa, 25-Oct-2022.) |
| Ref | Expression |
|---|---|
| brredunds | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 Redunds 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq12 3963 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝐵)) | |
| 2 | 1 | 3adant3 1132 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑥 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝐵)) |
| 3 | ineq12 4166 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑧 = 𝐶) → (𝑥 ∩ 𝑧) = (𝐴 ∩ 𝐶)) | |
| 4 | 3 | 3adant2 1131 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑥 ∩ 𝑧) = (𝐴 ∩ 𝐶)) |
| 5 | ineq12 4166 | . . . . 5 ⊢ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑦 ∩ 𝑧) = (𝐵 ∩ 𝐶)) | |
| 6 | 5 | 3adant1 1130 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑦 ∩ 𝑧) = (𝐵 ∩ 𝐶)) |
| 7 | 4, 6 | eqeq12d 2745 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ((𝑥 ∩ 𝑧) = (𝑦 ∩ 𝑧) ↔ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶))) |
| 8 | 2, 7 | anbi12d 632 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ((𝑥 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑧) = (𝑦 ∩ 𝑧)) ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)))) |
| 9 | df-redunds 38604 | . 2 ⊢ Redunds = ◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ (𝑥 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑧) = (𝑦 ∩ 𝑧))} | |
| 10 | 8, 9 | brcnvrabga 38314 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 Redunds 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3902 ⊆ wss 3903 〈cop 4583 class class class wbr 5092 Redunds credunds 38179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 df-oprab 7353 df-redunds 38604 |
| This theorem is referenced by: brredundsredund 38608 |
| Copyright terms: Public domain | W3C validator |