 Home Metamath Proof ExplorerTheorem List (p. 375 of 437) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-28351) Hilbert Space Explorer (28352-29876) Users' Mathboxes (29877-43667)

Theorem List for Metamath Proof Explorer - 37401-37500   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremdih1dimc 37401* Isomorphism H at an atom not under 𝑊. (Contributed by NM, 27-Apr-2014.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑃 = ((oc‘𝐾)‘𝑊)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑁 = (LSpan‘𝑈)    &   𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = (𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}))

Theoremdib2dim 37402 Extend dia2dim 37236 to partial isomorphism B. (Contributed by NM, 22-Sep-2014.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoB‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑 → (𝑃𝐴𝑃 𝑊))    &   (𝜑 → (𝑄𝐴𝑄 𝑊))       (𝜑 → (𝐼‘(𝑃 𝑄)) ⊆ ((𝐼𝑃) (𝐼𝑄)))

Theoremdih2dimb 37403 Extend dib2dim 37402 to isomorphism H. (Contributed by NM, 22-Sep-2014.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑 → (𝑃𝐴𝑃 𝑊))    &   (𝜑 → (𝑄𝐴𝑄 𝑊))       (𝜑 → (𝐼‘(𝑃 𝑄)) ⊆ ((𝐼𝑃) (𝐼𝑄)))

Theoremdih2dimbALTN 37404 Extend dia2dim 37236 to isomorphism H. (This version combines dib2dim 37402 and dih2dimb 37403 for shorter overall proof, but may be less easy to understand. TODO: decide which to use.) (Contributed by NM, 22-Sep-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑 → (𝑃𝐴𝑃 𝑊))    &   (𝜑 → (𝑄𝐴𝑄 𝑊))       (𝜑 → (𝐼‘(𝑃 𝑄)) ⊆ ((𝐼𝑃) (𝐼𝑄)))

Theoremdihopelvalcqat 37405* Ordered pair member of the partial isomorphism H for atom argument not under 𝑊. TODO: remove .t hypothesis. (Contributed by NM, 30-Mar-2014.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑃 = ((oc‘𝐾)‘𝑊)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)    &   𝐹 ∈ V    &   𝑆 ∈ V       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑄) ↔ (𝐹 = (𝑆𝐺) ∧ 𝑆𝐸)))

Theoremdihvalcq2 37406 Value of isomorphism H for a lattice 𝐾 when ¬ 𝑋 𝑊, given auxiliary atom 𝑄. (Contributed by NM, 26-Sep-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → (𝐼𝑋) = ((𝐼𝑄) (𝐼‘(𝑋 𝑊))))

Theoremdihopelvalcpre 37407* Member of value of isomorphism H for a lattice 𝐾 when ¬ 𝑋 𝑊, given auxiliary atom 𝑄. TODO: refactor to be shorter and more understandable; add lemmas? (Contributed by NM, 13-Mar-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑃 = ((oc‘𝐾)‘𝑊)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)    &   𝐹 ∈ V    &   𝑆 ∈ V    &   𝑍 = (𝑇 ↦ ( I ↾ 𝐵))    &   𝑁 = ((DIsoB‘𝐾)‘𝑊)    &   𝐶 = ((DIsoC‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    + = (+g𝑈)    &   𝑉 = (LSubSp‘𝑈)    &    = (LSSum‘𝑈)    &   𝑂 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑇 ↦ ((𝑎) ∘ (𝑏))))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋)))

Theoremdihopelvalc 37408* Member of value of isomorphism H for a lattice 𝐾 when ¬ 𝑋 𝑊, given auxiliary atom 𝑄. (Contributed by NM, 13-Mar-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑃 = ((oc‘𝐾)‘𝑊)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)    &   𝐹 ∈ V    &   𝑆 ∈ V       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ((𝐹𝑇𝑆𝐸) ∧ (𝑅‘(𝐹(𝑆𝐺))) 𝑋)))

Theoremdihlss 37409 The value of isomorphism H is a subspace. (Contributed by NM, 6-Mar-2014.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → (𝐼𝑋) ∈ 𝑆)

Theoremdihss 37410 The value of isomorphism H is a set of vectors. (Contributed by NM, 14-Mar-2014.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → (𝐼𝑋) ⊆ 𝑉)

Theoremdihssxp 37411 An isomorphism H value is included in the vector space (expressed as 𝑇 × 𝐸). (Contributed by NM, 26-Sep-2014.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝐵)       (𝜑 → (𝐼𝑋) ⊆ (𝑇 × 𝐸))

Theoremdihopcl 37412 Closure of an ordered pair (vector) member of a value of isomorphism H. (Contributed by NM, 26-Sep-2014.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝐵)    &   (𝜑 → ⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋))       (𝜑 → (𝐹𝑇𝑆𝐸))

TheoremxihopellsmN 37413* Ordered pair membership in a subspace sum of isomorphism H values. (Contributed by NM, 26-Sep-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐴 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐿 = (LSubSp‘𝑈)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (⟨𝐹, 𝑆⟩ ∈ ((𝐼𝑋) (𝐼𝑌)) ↔ ∃𝑔𝑡𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌)) ∧ (𝐹 = (𝑔) ∧ 𝑆 = (𝑡𝐴𝑢)))))

Theoremdihopellsm 37414* Ordered pair membership in a subspace sum of isomorphism H values. (Contributed by NM, 26-Sep-2014.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐴 = (𝑣𝐸, 𝑤𝐸 ↦ (𝑖𝑇 ↦ ((𝑣𝑖) ∘ (𝑤𝑖))))    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐿 = (LSubSp‘𝑈)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (⟨𝐹, 𝑆⟩ ∈ ((𝐼𝑋) (𝐼𝑌)) ↔ ∃𝑔𝑡𝑢((⟨𝑔, 𝑡⟩ ∈ (𝐼𝑋) ∧ ⟨, 𝑢⟩ ∈ (𝐼𝑌)) ∧ (𝐹 = (𝑔) ∧ 𝑆 = (𝑡𝐴𝑢)))))

Theoremdihord6apre 37415* Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑃 = ((oc‘𝐾)‘𝑊)    &   𝑂 = (𝑇 ↦ ( I ↾ 𝐵))    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐺 = (𝑇 (𝑃) = 𝑞)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝐼𝑋) ⊆ (𝐼𝑌)) → 𝑋 𝑌)

Theoremdihord3 37416 The isomorphism H for a lattice 𝐾 is order-preserving in the region under co-atom 𝑊. (Contributed by NM, 6-Mar-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝐼𝑋) ⊆ (𝐼𝑌) ↔ 𝑋 𝑌))

Theoremdihord4 37417 The isomorphism H for a lattice 𝐾 is order-preserving in the region not under co-atom 𝑊. TODO: reformat q e. A /\ -. q .<_ W to eliminate adant*. (Contributed by NM, 6-Mar-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) → ((𝐼𝑋) ⊆ (𝐼𝑌) ↔ 𝑋 𝑌))

Theoremdihord5b 37418 Part of proof that isomorphism H is order-preserving. TODO: eliminate 3ad2ant1; combine with other way to have one lhpmcvr2 . (Contributed by NM, 7-Mar-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ 𝑋 𝑌) → (𝐼𝑋) ⊆ (𝐼𝑌))

Theoremdihord6b 37419 Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ 𝑋 𝑌) → (𝐼𝑋) ⊆ (𝐼𝑌))

Theoremdihord6a 37420 Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝐼𝑋) ⊆ (𝐼𝑌)) → 𝑋 𝑌)

Theoremdihord5apre 37421 Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝐼𝑋) ⊆ (𝐼𝑌)) → 𝑋 𝑌)

Theoremdihord5a 37422 Part of proof that isomorphism H is order-preserving . (Contributed by NM, 7-Mar-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵 ∧ ¬ 𝑌 𝑊)) ∧ (𝐼𝑋) ⊆ (𝐼𝑌)) → 𝑋 𝑌)

Theoremdihord 37423 The isomorphism H is order-preserving. Part of proof after Lemma N of [Crawley] p. 122 line 6. (Contributed by NM, 7-Mar-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) → ((𝐼𝑋) ⊆ (𝐼𝑌) ↔ 𝑋 𝑌))

Theoremdih11 37424 The isomorphism H is one-to-one. Part of proof after Lemma N of [Crawley] p. 122 line 6. (Contributed by NM, 7-Mar-2014.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) → ((𝐼𝑋) = (𝐼𝑌) ↔ 𝑋 = 𝑌))

Theoremdihf11lem 37425 Functionality of the isomorphism H. (Contributed by NM, 6-Mar-2014.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:𝐵𝑆)

Theoremdihf11 37426 The isomorphism H for a lattice 𝐾 is a one-to-one function. Part of proof after Lemma N of [Crawley] p. 122 line 6. (Contributed by NM, 7-Mar-2014.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:𝐵1-1𝑆)

Theoremdihfn 37427 Functionality and domain of isomorphism H. (Contributed by NM, 9-Mar-2014.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼 Fn 𝐵)

Theoremdihdm 37428 Domain of isomorphism H. (Contributed by NM, 9-Mar-2014.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → dom 𝐼 = 𝐵)

Theoremdihcl 37429 Closure of isomorphism H. (Contributed by NM, 8-Mar-2014.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → (𝐼𝑋) ∈ ran 𝐼)

Theoremdihcnvcl 37430 Closure of isomorphism H converse. (Contributed by NM, 8-Mar-2014.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝐼𝑋) ∈ 𝐵)

Theoremdihcnvid1 37431 The converse isomorphism of an isomorphism. (Contributed by NM, 5-Aug-2014.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → (𝐼‘(𝐼𝑋)) = 𝑋)

Theoremdihcnvid2 37432 The isomorphism of a converse isomorphism. (Contributed by NM, 5-Aug-2014.)
𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝐼‘(𝐼𝑋)) = 𝑋)

Theoremdihcnvord 37433 Ordering property for converse of isomorphism H. (Contributed by NM, 17-Aug-2014.)
= (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝐼)    &   (𝜑𝑌 ∈ ran 𝐼)       (𝜑 → ((𝐼𝑋) (𝐼𝑌) ↔ 𝑋𝑌))

Theoremdihcnv11 37434 The converse of isomorphism H is one-to-one. (Contributed by NM, 17-Aug-2014.)
𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝐼)    &   (𝜑𝑌 ∈ ran 𝐼)       (𝜑 → ((𝐼𝑋) = (𝐼𝑌) ↔ 𝑋 = 𝑌))

Theoremdihsslss 37435 The isomorphism H maps to subspaces. (Contributed by NM, 14-Mar-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ran 𝐼𝑆)

Theoremdihrnlss 37436 The isomorphism H maps to subspaces. (Contributed by NM, 14-Mar-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → 𝑋𝑆)

Theoremdihrnss 37437 The isomorphism H maps to a set of vectors. (Contributed by NM, 14-Mar-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → 𝑋𝑉)

Theoremdihvalrel 37438 The value of isomorphism H is a relation. (Contributed by NM, 9-Mar-2014.)
𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑋))

Theoremdih0 37439 The value of isomorphism H at the lattice zero is the singleton of the zero vector i.e. the zero subspace. (Contributed by NM, 9-Mar-2014.)
0 = (0.‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑂 = (0g𝑈)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼0 ) = {𝑂})

Theoremdih0bN 37440 A lattice element is zero iff its isomorphism is the zero subspace. (Contributed by NM, 16-Aug-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    0 = (0.‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑍 = (0g𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝐵)       (𝜑 → (𝑋 = 0 ↔ (𝐼𝑋) = {𝑍}))

Theoremdih0vbN 37441 A vector is zero iff its span is the isomorphism of lattice zero. (Contributed by NM, 16-Aug-2014.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &    0 = (0.‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑍 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)       (𝜑 → (𝑋 = 𝑍 ↔ (𝑁‘{𝑋}) = (𝐼0 )))

Theoremdih0cnv 37442 The isomorphism H converse value of the zero subspace is the lattice zero. (Contributed by NM, 19-Jun-2014.)
𝐻 = (LHyp‘𝐾)    &    0 = (0.‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑍 = (0g𝑈)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼‘{𝑍}) = 0 )

Theoremdih0rn 37443 The zero subspace belongs to the range of isomorphism H. (Contributed by NM, 27-Apr-2014.)
𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    0 = (0g𝑈)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → { 0 } ∈ ran 𝐼)

Theoremdih0sb 37444 A subspace is zero iff the converse of its isomorphism is lattice zero. (Contributed by NM, 17-Aug-2014.)
𝐻 = (LHyp‘𝐾)    &    0 = (0.‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑍 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ ran 𝐼)       (𝜑 → (𝑋 = {𝑍} ↔ (𝐼𝑋) = 0 ))

Theoremdih1 37445 The value of isomorphism H at the lattice unit is the set of all vectors. (Contributed by NM, 13-Mar-2014.)
1 = (1.‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼1 ) = 𝑉)

Theoremdih1rn 37446 The full vector space belongs to the range of isomorphism H. (Contributed by NM, 19-Jun-2014.)
𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑉 ∈ ran 𝐼)

Theoremdih1cnv 37447 The isomorphism H converse value of the full vector space is the lattice one. (Contributed by NM, 19-Jun-2014.)
𝐻 = (LHyp‘𝐾)    &    1 = (1.‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼𝑉) = 1 )

TheoremdihwN 37448* Value of isomorphism H at the fiducial hyperplane 𝑊. (Contributed by NM, 25-Aug-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &    0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑 → (𝐼𝑊) = (𝑇 × { 0 }))

Theoremdihmeetlem1N 37449* Isomorphism H of a conjunction. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (meet‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑃 = ((oc‘𝐾)‘𝑊)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐺 = (𝑇 (𝑃) = 𝑞)    &    0 = (𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))

Theoremdihglblem5apreN 37450* A conjunction property of isomorphism H. TODO: reduce antecedent size; general review for shorter proof. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (meet‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑃 = ((oc‘𝐾)‘𝑊)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐺 = (𝑇 (𝑃) = 𝑞)    &    0 = (𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐼‘(𝑋 𝑊)) = ((𝐼𝑋) ∩ (𝐼𝑊)))

Theoremdihglblem5aN 37451 A conjunction property of isomorphism H. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (meet‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → (𝐼‘(𝑋 𝑊)) = ((𝐼𝑋) ∩ (𝐼𝑊)))

Theoremdihglblem2aN 37452* Lemma for isomorphism H of a GLB. (Contributed by NM, 19-Mar-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (meet‘𝐾)    &   𝐺 = (glb‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → 𝑇 ≠ ∅)

Theoremdihglblem2N 37453* The GLB of a set of lattice elements 𝑆 is the same as that of the set 𝑇 with elements of 𝑆 cut down to be under 𝑊. (Contributed by NM, 19-Mar-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (meet‘𝐾)    &   𝐺 = (glb‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) = (𝐺𝑇))

Theoremdihglblem3N 37454* Isomorphism H of a lattice glb. (Contributed by NM, 20-Mar-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (meet‘𝐾)    &   𝐺 = (glb‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}    &   𝐽 = ((DIsoB‘𝐾)‘𝑊)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑇)) = 𝑥𝑇 (𝐼𝑥))

Theoremdihglblem3aN 37455* Isomorphism H of a lattice glb. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (meet‘𝐾)    &   𝐺 = (glb‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}    &   𝐽 = ((DIsoB‘𝐾)‘𝑊)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑆)) = 𝑥𝑇 (𝐼𝑥))

Theoremdihglblem4 37456* Isomorphism H of a lattice glb. (Contributed by NM, 21-Mar-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (meet‘𝐾)    &   𝐺 = (glb‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}    &   𝐽 = ((DIsoB‘𝐾)‘𝑊)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → (𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥))

Theoremdihglblem5 37457* Isomorphism H of a lattice glb. (Contributed by NM, 9-Apr-2014.)
𝐵 = (Base‘𝐾)    &   𝐺 = (glb‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇𝐵𝑇 ≠ ∅)) → 𝑥𝑇 (𝐼𝑥) ∈ 𝑆)

Theoremdihmeetlem2N 37458 Isomorphism H of a conjunction. (Contributed by NM, 22-Mar-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (meet‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑃 = ((oc‘𝐾)‘𝑊)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐺 = (𝑇 (𝑃) = 𝑞)    &    0 = (𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))

TheoremdihglbcpreN 37459* Isomorphism H of a lattice glb when the glb is not under the fiducial hyperplane 𝑊. (Contributed by NM, 20-Mar-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &   𝐺 = (glb‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑃 = ((oc‘𝐾)‘𝑊)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐹 = (𝑔𝑇 (𝑔𝑃) = 𝑞)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))

TheoremdihglbcN 37460* Isomorphism H of a lattice glb when the glb is not under the fiducial hyperplane 𝑊. (Contributed by NM, 26-Mar-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &   𝐺 = (glb‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &    = (le‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅) ∧ ¬ (𝐺𝑆) 𝑊) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))

TheoremdihmeetcN 37461 Isomorphism H of a lattice meet when the meet is not under the fiducial hyperplane 𝑊. (Contributed by NM, 26-Mar-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (meet‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ ¬ (𝑋 𝑌) 𝑊) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))

TheoremdihmeetbN 37462 Isomorphism H of a lattice meet when one element is under the fiducial hyperplane 𝑊. (Contributed by NM, 26-Mar-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (meet‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵 ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))

TheoremdihmeetbclemN 37463 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (meet‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) → (𝐼‘(𝑋 𝑌)) = (((𝐼𝑋) ∩ (𝐼𝑌)) ∩ (𝐼𝑊)))

Theoremdihmeetlem3N 37464 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌) 𝑊) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 (𝑋 𝑊)) = 𝑋) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑌 𝑊)) = 𝑌)) → 𝑄𝑅)

Theoremdihmeetlem4preN 37465* Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    0 = (0g𝑈)    &   𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)    &   𝑃 = ((oc‘𝐾)‘𝑊)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))) = { 0 })

Theoremdihmeetlem4N 37466 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    0 = (0g𝑈)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))) = { 0 })

Theoremdihmeetlem5 37467 Part of proof that isomorphism H is order-preserving . (Contributed by NM, 6-Apr-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑄𝐴𝑄 𝑋)) → (𝑋 (𝑌 𝑄)) = ((𝑋 𝑌) 𝑄))

Theoremdihmeetlem6 37468 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑄 𝑋)) → ¬ (𝑋 (𝑌 𝑄)) 𝑊)

Theoremdihmeetlem7N 37469 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑌)) → (((𝑋 𝑌) 𝑝) 𝑌) = (𝑋 𝑌))

Theoremdihjatc1 37470 Lemma for isomorphism H of a lattice meet. TODO: shorter proof if we change order of (𝑋 𝑌) 𝑄 here and down? (Contributed by NM, 6-Apr-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 𝑋 ∧ (𝑋 𝑌) 𝑊)) → (𝐼‘((𝑋 𝑌) 𝑄)) = ((𝐼𝑄) (𝐼‘(𝑋 𝑌))))

Theoremdihjatc2N 37471 Isomorphism H of join with an atom. (Contributed by NM, 26-Aug-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 𝑋 ∧ (𝑋 𝑌) 𝑊)) → (𝐼‘(𝑄 (𝑋 𝑌))) = ((𝐼𝑄) (𝐼‘(𝑋 𝑌))))

Theoremdihjatc3 37472 Isomorphism H of join with an atom. (Contributed by NM, 26-Aug-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑄 𝑋 ∧ (𝑋 𝑌) 𝑊)) → (𝐼‘((𝑋 𝑌) 𝑄)) = ((𝐼‘(𝑋 𝑌)) (𝐼𝑄)))

Theoremdihmeetlem8N 37473 Lemma for isomorphism H of a lattice meet. TODO: shorter proof if we change order of (𝑋 𝑌) 𝑝 here and down? (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ (𝑝 𝑋 ∧ (𝑋 𝑌) 𝑊)) → (𝐼‘((𝑋 𝑌) 𝑝)) = ((𝐼𝑝) (𝐼‘(𝑋 𝑌))))

Theoremdihmeetlem9N 37474 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (((𝐼𝑝) (𝐼‘(𝑋 𝑌))) ∩ (𝐼𝑌)) = ((𝐼‘(𝑋 𝑌)) ((𝐼𝑝) ∩ (𝐼𝑌))))

Theoremdihmeetlem10N 37475 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑝 𝑋)) → (𝐼‘((𝑋 𝑌) 𝑝)) = ((𝐼𝑋) ∩ (𝐼‘(𝑌 𝑝))))

Theoremdihmeetlem11N 37476 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑝 𝑋)) → ((𝐼‘((𝑋 𝑌) 𝑝)) ∩ (𝐼𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))

Theoremdihmeetlem12N 37477 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ 𝑝 𝑋 ∧ (𝑋 𝑌) 𝑊)) → ((𝐼‘(𝑋 𝑌)) ((𝐼𝑝) ∩ (𝐼𝑌))) = ((𝐼𝑋) ∩ (𝐼𝑌)))

Theoremdihmeetlem13N 37478* Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑃 = ((oc‘𝐾)‘𝑊)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑇 ↦ ( I ↾ 𝐵))    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    0 = (0g𝑈)    &   𝐹 = (𝑇 (𝑃) = 𝑄)    &   𝐺 = (𝑇 (𝑃) = 𝑅)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → ((𝐼𝑄) ∩ (𝐼𝑅)) = { 0 })

Theoremdihmeetlem14N 37479 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝐵𝑝𝐵) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ 𝑟 𝑌 ∧ (𝑌 𝑝) 𝑊)) → ((𝐼‘(𝑌 𝑝)) ((𝐼𝑟) ∩ (𝐼𝑝))) = ((𝐼𝑌) ∩ (𝐼𝑝)))

Theoremdihmeetlem15N 37480 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &    0 = (0g𝑈)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝐵 ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ 𝑟 𝑌 ∧ (𝑌 𝑝) 𝑊)) → ((𝐼𝑟) ∩ (𝐼𝑝)) = { 0 })

Theoremdihmeetlem16N 37481 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝐵 ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ ((𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ 𝑟 𝑌 ∧ (𝑌 𝑝) 𝑊)) → (𝐼‘(𝑌 𝑝)) = ((𝐼𝑌) ∩ (𝐼𝑝)))

Theoremdihmeetlem17N 37482 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &    0 = (0.‘𝐾)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑝 𝑋)) → (𝑌 𝑝) = 0 )

Theoremdihmeetlem18N 37483 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &    0 = (0g𝑈)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ (𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ (𝑝 𝑋𝑟 𝑌 ∧ (𝑋 𝑌) 𝑊))) → ((𝐼𝑌) ∩ (𝐼𝑝)) = { 0 })

Theoremdihmeetlem19N 37484 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝑌𝐵) ∧ ((𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ (𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ (𝑝 𝑋𝑟 𝑌 ∧ (𝑋 𝑌) 𝑊))) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))

Theoremdihmeetlem20N 37485 Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑌𝐵 ∧ ¬ 𝑌 𝑊) ∧ (𝑋 𝑌) 𝑊)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))

TheoremdihmeetALTN 37486 Isomorphism H of a lattice meet. This version does not depend on the atomisticity of the constructed vector space. TODO: Delete? (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (meet‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵𝑌𝐵) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))

Theoremdih1dimatlem0 37487* Lemma for dih1dimat 37489. (Contributed by NM, 11-Apr-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝐴 = (LSAtoms‘𝑈)    &   𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐶 = (Atoms‘𝐾)    &   𝑃 = ((oc‘𝐾)‘𝑊)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑇 ↦ ( I ↾ 𝐵))    &   𝐹 = (Scalar‘𝑈)    &   𝐽 = (invr𝐹)    &   𝑉 = (Base‘𝑈)    &    · = ( ·𝑠𝑈)    &   𝑆 = (LSubSp‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &    0 = (0g𝑈)    &   𝐺 = (𝑇 (𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))))

Theoremdih1dimatlem 37488* Lemma for dih1dimat 37489. (Contributed by NM, 10-Apr-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝐴 = (LSAtoms‘𝑈)    &   𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐶 = (Atoms‘𝐾)    &   𝑃 = ((oc‘𝐾)‘𝑊)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑇 ↦ ( I ↾ 𝐵))    &   𝐹 = (Scalar‘𝑈)    &   𝐽 = (invr𝐹)    &   𝑉 = (Base‘𝑈)    &    · = ( ·𝑠𝑈)    &   𝑆 = (LSubSp‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &    0 = (0g𝑈)    &   𝐺 = (𝑇 (𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝐴) → 𝐷 ∈ ran 𝐼)

Theoremdih1dimat 37489 Any 1-dimensional subspace is a value of isomorphism H. (Contributed by NM, 11-Apr-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝐴 = (LSAtoms‘𝑈)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴) → 𝑃 ∈ ran 𝐼)

Theoremdihlsprn 37490 The span of a vector belongs to the range of isomorphism H. (Contributed by NM, 27-Apr-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ ran 𝐼)

TheoremdihlspsnssN 37491 A subspace included in a 1-dim subspace belongs to the range of isomorphism H. (Contributed by NM, 26-Apr-2014.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑆 = (LSubSp‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑇 ⊆ (𝑁‘{𝑋})) → (𝑇𝑆𝑇 ∈ ran 𝐼))

Theoremdihlspsnat 37492 The inverse isomorphism H of the span of a singleton is a Hilbert lattice atom. (Contributed by NM, 27-Apr-2014.)
𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    0 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉𝑋0 ) → (𝐼‘(𝑁‘{𝑋})) ∈ 𝐴)

Theoremdihatlat 37493 The isomorphism H of an atom is a 1-dim subspace. (Contributed by NM, 28-Apr-2014.)
𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝐿 = (LSAtoms‘𝑈)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐴) → (𝐼𝑄) ∈ 𝐿)

Theoremdihat 37494 There exists at least one atom in the subspaces of vector space H. (Contributed by NM, 12-Aug-2014.)
𝐻 = (LHyp‘𝐾)    &   𝑃 = ((oc‘𝐾)‘𝑊)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑 → (𝐼𝑃) ∈ 𝐴)

TheoremdihpN 37495* The value of isomorphism H at the fiducial atom 𝑃 is determined by the vector ⟨0, 𝑆 (the zero translation ltrnid 36294 and a nonzero member of the endomorphism ring). In particular, 𝑆 can be replaced with the ring unit ( I ↾ 𝑇). (Contributed by NM, 26-Aug-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑃 = ((oc‘𝐾)‘𝑊)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑁 = (LSpan‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑 → (𝑆𝐸𝑆𝑂))       (𝜑 → (𝐼𝑃) = (𝑁‘{⟨( I ↾ 𝐵), 𝑆⟩}))

Theoremdihlatat 37496 The reverse isomorphism H of a 1-dim subspace is an atom. (Contributed by NM, 28-Apr-2014.)
𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝐿 = (LSAtoms‘𝑈)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐿) → (𝐼𝑄) ∈ 𝐴)

Theoremdihatexv 37497* There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 16-Aug-2014.)
𝐵 = (Base‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    0 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑄𝐵)       (𝜑 → (𝑄𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })(𝐼𝑄) = (𝑁‘{𝑥})))

Theoremdihatexv2 37498* There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 17-Aug-2014.)
𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    0 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑 → (𝑄𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑄 = (𝐼‘(𝑁‘{𝑥}))))

Theoremdihglblem6 37499* Isomorphism H of a lattice glb. (Contributed by NM, 9-Apr-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐺 = (glb‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑃 = (LSubSp‘𝑈)    &   𝐷 = (LSAtoms‘𝑈)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))

Theoremdihglb 37500* Isomorphism H of a lattice glb. (Contributed by NM, 11-Apr-2014.)
𝐵 = (Base‘𝐾)    &   𝐺 = (glb‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43667
 Copyright terms: Public domain < Previous  Next >