Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcoeleqvrel Structured version   Visualization version   GIF version

Theorem dfcoeleqvrel 38586
Description: Alternate definition of the coelement equivalence relation predicate: a coelement equivalence relation is an equivalence relation on coelements. Other alternate definitions should be based on eqvrelcoss2 38583, eqvrelcoss3 38582 and eqvrelcoss4 38584 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.)
Assertion
Ref Expression
dfcoeleqvrel ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴)

Proof of Theorem dfcoeleqvrel
StepHypRef Expression
1 df-coeleqvrel 38551 . 2 ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))
2 df-coels 38376 . . 3 𝐴 = ≀ ( E ↾ 𝐴)
32eqvreleqi 38567 . 2 ( EqvRel ∼ 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))
41, 3bitr4i 278 1 ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   E cep 5530  ccnv 5630  cres 5633  ccoss 38142  ccoels 38143   EqvRel weqvrel 38159   CoElEqvRel wcoeleqvrel 38161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-coels 38376  df-refrel 38476  df-symrel 38508  df-trrel 38538  df-eqvrel 38549  df-coeleqvrel 38551
This theorem is referenced by:  dfcomember3  38639
  Copyright terms: Public domain W3C validator