![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcoeleqvrel | Structured version Visualization version GIF version |
Description: Alternate definition of the coelement equivalence relation predicate: a coelement equivalence relation is an equivalence relation on coelements. Other alternate definitions should be based on eqvrelcoss2 37484, eqvrelcoss3 37483 and eqvrelcoss4 37485 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.) |
Ref | Expression |
---|---|
dfcoeleqvrel | ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coeleqvrel 37452 | . 2 ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) | |
2 | df-coels 37277 | . . 3 ⊢ ∼ 𝐴 = ≀ (◡ E ↾ 𝐴) | |
3 | 2 | eqvreleqi 37468 | . 2 ⊢ ( EqvRel ∼ 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
4 | 1, 3 | bitr4i 277 | 1 ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 E cep 5579 ◡ccnv 5675 ↾ cres 5678 ≀ ccoss 37038 ∼ ccoels 37039 EqvRel weqvrel 37055 CoElEqvRel wcoeleqvrel 37057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-coels 37277 df-refrel 37377 df-symrel 37409 df-trrel 37439 df-eqvrel 37450 df-coeleqvrel 37452 |
This theorem is referenced by: dfcomember3 37539 |
Copyright terms: Public domain | W3C validator |