Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcoeleqvrel Structured version   Visualization version   GIF version

Theorem dfcoeleqvrel 36662
Description: Alternate definition of the coelement equivalence relation predicate: a coelement equivalence relation is an equivalence relation on coelements. Other alternate definitions should be based on eqvrelcoss2 36659, eqvrelcoss3 36658 and eqvrelcoss4 36660 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.)
Assertion
Ref Expression
dfcoeleqvrel ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴)

Proof of Theorem dfcoeleqvrel
StepHypRef Expression
1 df-coeleqvrel 36627 . 2 ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))
2 df-coels 36465 . . 3 𝐴 = ≀ ( E ↾ 𝐴)
32eqvreleqi 36643 . 2 ( EqvRel ∼ 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))
41, 3bitr4i 277 1 ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205   E cep 5485  ccnv 5579  cres 5582  ccoss 36260  ccoels 36261   EqvRel weqvrel 36277   CoElEqvRel wcoeleqvrel 36279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-coels 36465  df-refrel 36557  df-symrel 36585  df-trrel 36615  df-eqvrel 36625  df-coeleqvrel 36627
This theorem is referenced by:  dfmember3  36713
  Copyright terms: Public domain W3C validator