Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcoeleqvrel | Structured version Visualization version GIF version |
Description: Alternate definition of the coelement equivalence relation predicate: a coelement equivalence relation is an equivalence relation on coelements. Other alternate definitions should be based on eqvrelcoss2 36355, eqvrelcoss3 36354 and eqvrelcoss4 36356 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.) |
Ref | Expression |
---|---|
dfcoeleqvrel | ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coeleqvrel 36323 | . 2 ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) | |
2 | df-coels 36161 | . . 3 ⊢ ∼ 𝐴 = ≀ (◡ E ↾ 𝐴) | |
3 | 2 | eqvreleqi 36339 | . 2 ⊢ ( EqvRel ∼ 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
4 | 1, 3 | bitr4i 281 | 1 ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 E cep 5433 ◡ccnv 5524 ↾ cres 5527 ≀ ccoss 35956 ∼ ccoels 35957 EqvRel weqvrel 35973 CoElEqvRel wcoeleqvrel 35975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-br 5031 df-opab 5093 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-coels 36161 df-refrel 36253 df-symrel 36281 df-trrel 36311 df-eqvrel 36321 df-coeleqvrel 36323 |
This theorem is referenced by: dfmember3 36409 |
Copyright terms: Public domain | W3C validator |