| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcoeleqvrel | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the coelement equivalence relation predicate: a coelement equivalence relation is an equivalence relation on coelements. Other alternate definitions should be based on eqvrelcoss2 38725, eqvrelcoss3 38724 and eqvrelcoss4 38726 when needed. (Contributed by Peter Mazsa, 28-Nov-2022.) |
| Ref | Expression |
|---|---|
| dfcoeleqvrel | ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-coeleqvrel 38693 | . 2 ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) | |
| 2 | df-coels 38524 | . . 3 ⊢ ∼ 𝐴 = ≀ (◡ E ↾ 𝐴) | |
| 3 | 2 | eqvreleqi 38709 | . 2 ⊢ ( EqvRel ∼ 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ∼ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 E cep 5513 ◡ccnv 5613 ↾ cres 5616 ≀ ccoss 38232 ∼ ccoels 38233 EqvRel weqvrel 38249 CoElEqvRel wcoeleqvrel 38251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-coels 38524 df-refrel 38614 df-symrel 38646 df-trrel 38680 df-eqvrel 38691 df-coeleqvrel 38693 |
| This theorem is referenced by: dfcomember3 38782 |
| Copyright terms: Public domain | W3C validator |