|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-redund | Structured version Visualization version GIF version | ||
| Description: Define the redundancy predicate. Read: 𝐴 is redundant with respect to 𝐵 in 𝐶. For sets, binary relation on the class of all redundant sets (brredunds 38627) is equivalent to satisfying the redundancy predicate. (Contributed by Peter Mazsa, 23-Oct-2022.) | 
| Ref | Expression | 
|---|---|
| df-redund | ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | 1, 2, 3 | wredund 38203 | . 2 wff 𝐴 Redund 〈𝐵, 𝐶〉 | 
| 5 | 1, 2 | wss 3951 | . . 3 wff 𝐴 ⊆ 𝐵 | 
| 6 | 1, 3 | cin 3950 | . . . 4 class (𝐴 ∩ 𝐶) | 
| 7 | 2, 3 | cin 3950 | . . . 4 class (𝐵 ∩ 𝐶) | 
| 8 | 6, 7 | wceq 1540 | . . 3 wff (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) | 
| 9 | 5, 8 | wa 395 | . 2 wff (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | 
| 10 | 4, 9 | wb 206 | 1 wff (𝐴 Redund 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶))) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: brredundsredund 38628 redundss3 38629 redundeq1 38630 refrelsredund4 38633 | 
| Copyright terms: Public domain | W3C validator |