| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-redund | Structured version Visualization version GIF version | ||
| Description: Define the redundancy predicate. Read: 𝐴 is redundant with respect to 𝐵 in 𝐶. For sets, binary relation on the class of all redundant sets (brredunds 38649) is equivalent to satisfying the redundancy predicate. (Contributed by Peter Mazsa, 23-Oct-2022.) |
| Ref | Expression |
|---|---|
| df-redund | ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | 1, 2, 3 | wredund 38225 | . 2 wff 𝐴 Redund 〈𝐵, 𝐶〉 |
| 5 | 1, 2 | wss 3931 | . . 3 wff 𝐴 ⊆ 𝐵 |
| 6 | 1, 3 | cin 3930 | . . . 4 class (𝐴 ∩ 𝐶) |
| 7 | 2, 3 | cin 3930 | . . . 4 class (𝐵 ∩ 𝐶) |
| 8 | 6, 7 | wceq 1540 | . . 3 wff (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) |
| 9 | 5, 8 | wa 395 | . 2 wff (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
| 10 | 4, 9 | wb 206 | 1 wff (𝐴 Redund 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: brredundsredund 38650 redundss3 38651 redundeq1 38652 refrelsredund4 38655 |
| Copyright terms: Public domain | W3C validator |