Detailed syntax breakdown of Definition df-resc
| Step | Hyp | Ref
| Expression |
| 1 | | cresc 17852 |
. 2
class
↾cat |
| 2 | | vc |
. . 3
setvar 𝑐 |
| 3 | | vh |
. . 3
setvar ℎ |
| 4 | | cvv 3480 |
. . 3
class
V |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑐 |
| 6 | 3 | cv 1539 |
. . . . . . 7
class ℎ |
| 7 | 6 | cdm 5685 |
. . . . . 6
class dom ℎ |
| 8 | 7 | cdm 5685 |
. . . . 5
class dom dom
ℎ |
| 9 | | cress 17274 |
. . . . 5
class
↾s |
| 10 | 5, 8, 9 | co 7431 |
. . . 4
class (𝑐 ↾s dom dom
ℎ) |
| 11 | | cnx 17230 |
. . . . . 6
class
ndx |
| 12 | | chom 17308 |
. . . . . 6
class
Hom |
| 13 | 11, 12 | cfv 6561 |
. . . . 5
class (Hom
‘ndx) |
| 14 | 13, 6 | cop 4632 |
. . . 4
class
〈(Hom ‘ndx), ℎ〉 |
| 15 | | csts 17200 |
. . . 4
class
sSet |
| 16 | 10, 14, 15 | co 7431 |
. . 3
class ((𝑐 ↾s dom dom
ℎ) sSet 〈(Hom
‘ndx), ℎ〉) |
| 17 | 2, 3, 4, 4, 16 | cmpo 7433 |
. 2
class (𝑐 ∈ V, ℎ ∈ V ↦ ((𝑐 ↾s dom dom ℎ) sSet 〈(Hom ‘ndx),
ℎ〉)) |
| 18 | 1, 17 | wceq 1540 |
1
wff
↾cat = (𝑐
∈ V, ℎ ∈ V ↦
((𝑐 ↾s dom
dom ℎ) sSet 〈(Hom
‘ndx), ℎ〉)) |