Detailed syntax breakdown of Definition df-subc
| Step | Hyp | Ref
| Expression |
| 1 | | csubc 17853 |
. 2
class
Subcat |
| 2 | | vc |
. . 3
setvar 𝑐 |
| 3 | | ccat 17707 |
. . 3
class
Cat |
| 4 | | vh |
. . . . . . 7
setvar ℎ |
| 5 | 4 | cv 1539 |
. . . . . 6
class ℎ |
| 6 | 2 | cv 1539 |
. . . . . . 7
class 𝑐 |
| 7 | | chomf 17709 |
. . . . . . 7
class
Homf |
| 8 | 6, 7 | cfv 6561 |
. . . . . 6
class
(Homf ‘𝑐) |
| 9 | | cssc 17851 |
. . . . . 6
class
⊆cat |
| 10 | 5, 8, 9 | wbr 5143 |
. . . . 5
wff ℎ ⊆cat
(Homf ‘𝑐) |
| 11 | | vx |
. . . . . . . . . . 11
setvar 𝑥 |
| 12 | 11 | cv 1539 |
. . . . . . . . . 10
class 𝑥 |
| 13 | | ccid 17708 |
. . . . . . . . . . 11
class
Id |
| 14 | 6, 13 | cfv 6561 |
. . . . . . . . . 10
class
(Id‘𝑐) |
| 15 | 12, 14 | cfv 6561 |
. . . . . . . . 9
class
((Id‘𝑐)‘𝑥) |
| 16 | 12, 12, 5 | co 7431 |
. . . . . . . . 9
class (𝑥ℎ𝑥) |
| 17 | 15, 16 | wcel 2108 |
. . . . . . . 8
wff
((Id‘𝑐)‘𝑥) ∈ (𝑥ℎ𝑥) |
| 18 | | vg |
. . . . . . . . . . . . . . 15
setvar 𝑔 |
| 19 | 18 | cv 1539 |
. . . . . . . . . . . . . 14
class 𝑔 |
| 20 | | vf |
. . . . . . . . . . . . . . 15
setvar 𝑓 |
| 21 | 20 | cv 1539 |
. . . . . . . . . . . . . 14
class 𝑓 |
| 22 | | vy |
. . . . . . . . . . . . . . . . 17
setvar 𝑦 |
| 23 | 22 | cv 1539 |
. . . . . . . . . . . . . . . 16
class 𝑦 |
| 24 | 12, 23 | cop 4632 |
. . . . . . . . . . . . . . 15
class
〈𝑥, 𝑦〉 |
| 25 | | vz |
. . . . . . . . . . . . . . . 16
setvar 𝑧 |
| 26 | 25 | cv 1539 |
. . . . . . . . . . . . . . 15
class 𝑧 |
| 27 | | cco 17309 |
. . . . . . . . . . . . . . . 16
class
comp |
| 28 | 6, 27 | cfv 6561 |
. . . . . . . . . . . . . . 15
class
(comp‘𝑐) |
| 29 | 24, 26, 28 | co 7431 |
. . . . . . . . . . . . . 14
class
(〈𝑥, 𝑦〉(comp‘𝑐)𝑧) |
| 30 | 19, 21, 29 | co 7431 |
. . . . . . . . . . . . 13
class (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) |
| 31 | 12, 26, 5 | co 7431 |
. . . . . . . . . . . . 13
class (𝑥ℎ𝑧) |
| 32 | 30, 31 | wcel 2108 |
. . . . . . . . . . . 12
wff (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥ℎ𝑧) |
| 33 | 23, 26, 5 | co 7431 |
. . . . . . . . . . . 12
class (𝑦ℎ𝑧) |
| 34 | 32, 18, 33 | wral 3061 |
. . . . . . . . . . 11
wff
∀𝑔 ∈
(𝑦ℎ𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥ℎ𝑧) |
| 35 | 12, 23, 5 | co 7431 |
. . . . . . . . . . 11
class (𝑥ℎ𝑦) |
| 36 | 34, 20, 35 | wral 3061 |
. . . . . . . . . 10
wff
∀𝑓 ∈
(𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥ℎ𝑧) |
| 37 | | vs |
. . . . . . . . . . 11
setvar 𝑠 |
| 38 | 37 | cv 1539 |
. . . . . . . . . 10
class 𝑠 |
| 39 | 36, 25, 38 | wral 3061 |
. . . . . . . . 9
wff
∀𝑧 ∈
𝑠 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥ℎ𝑧) |
| 40 | 39, 22, 38 | wral 3061 |
. . . . . . . 8
wff
∀𝑦 ∈
𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥ℎ𝑧) |
| 41 | 17, 40 | wa 395 |
. . . . . . 7
wff
(((Id‘𝑐)‘𝑥) ∈ (𝑥ℎ𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥ℎ𝑧)) |
| 42 | 41, 11, 38 | wral 3061 |
. . . . . 6
wff
∀𝑥 ∈
𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥ℎ𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥ℎ𝑧)) |
| 43 | 5 | cdm 5685 |
. . . . . . 7
class dom ℎ |
| 44 | 43 | cdm 5685 |
. . . . . 6
class dom dom
ℎ |
| 45 | 42, 37, 44 | wsbc 3788 |
. . . . 5
wff [dom
dom ℎ / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥ℎ𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥ℎ𝑧)) |
| 46 | 10, 45 | wa 395 |
. . . 4
wff (ℎ ⊆cat
(Homf ‘𝑐) ∧ [dom dom ℎ / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥ℎ𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥ℎ𝑧))) |
| 47 | 46, 4 | cab 2714 |
. . 3
class {ℎ ∣ (ℎ ⊆cat (Homf
‘𝑐) ∧ [dom
dom ℎ / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥ℎ𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥ℎ𝑧)))} |
| 48 | 2, 3, 47 | cmpt 5225 |
. 2
class (𝑐 ∈ Cat ↦ {ℎ ∣ (ℎ ⊆cat (Homf
‘𝑐) ∧ [dom
dom ℎ / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥ℎ𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥ℎ𝑧)))}) |
| 49 | 1, 48 | wceq 1540 |
1
wff Subcat =
(𝑐 ∈ Cat ↦
{ℎ ∣ (ℎ ⊆cat
(Homf ‘𝑐) ∧ [dom dom ℎ / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥ℎ𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥ℎ𝑧)))}) |