![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rescval | Structured version Visualization version GIF version |
Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rescval.1 | ⊢ 𝐷 = (𝐶 ↾cat 𝐻) |
Ref | Expression |
---|---|
rescval | ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐻 ∈ 𝑊) → 𝐷 = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescval.1 | . 2 ⊢ 𝐷 = (𝐶 ↾cat 𝐻) | |
2 | elex 3499 | . . 3 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
3 | elex 3499 | . . 3 ⊢ (𝐻 ∈ 𝑊 → 𝐻 ∈ V) | |
4 | simpl 482 | . . . . . 6 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → 𝑐 = 𝐶) | |
5 | simpr 484 | . . . . . . . 8 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → ℎ = 𝐻) | |
6 | 5 | dmeqd 5919 | . . . . . . 7 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → dom ℎ = dom 𝐻) |
7 | 6 | dmeqd 5919 | . . . . . 6 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → dom dom ℎ = dom dom 𝐻) |
8 | 4, 7 | oveq12d 7449 | . . . . 5 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → (𝑐 ↾s dom dom ℎ) = (𝐶 ↾s dom dom 𝐻)) |
9 | 5 | opeq2d 4885 | . . . . 5 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → 〈(Hom ‘ndx), ℎ〉 = 〈(Hom ‘ndx), 𝐻〉) |
10 | 8, 9 | oveq12d 7449 | . . . 4 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → ((𝑐 ↾s dom dom ℎ) sSet 〈(Hom ‘ndx), ℎ〉) = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
11 | df-resc 17859 | . . . 4 ⊢ ↾cat = (𝑐 ∈ V, ℎ ∈ V ↦ ((𝑐 ↾s dom dom ℎ) sSet 〈(Hom ‘ndx), ℎ〉)) | |
12 | ovex 7464 | . . . 4 ⊢ ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉) ∈ V | |
13 | 10, 11, 12 | ovmpoa 7588 | . . 3 ⊢ ((𝐶 ∈ V ∧ 𝐻 ∈ V) → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
14 | 2, 3, 13 | syl2an 596 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐻 ∈ 𝑊) → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
15 | 1, 14 | eqtrid 2787 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐻 ∈ 𝑊) → 𝐷 = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 〈cop 4637 dom cdm 5689 ‘cfv 6563 (class class class)co 7431 sSet csts 17197 ndxcnx 17227 ↾s cress 17274 Hom chom 17309 ↾cat cresc 17856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-resc 17859 |
This theorem is referenced by: rescval2 17876 |
Copyright terms: Public domain | W3C validator |