MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescval Structured version   Visualization version   GIF version

Theorem rescval 17888
Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypothesis
Ref Expression
rescval.1 𝐷 = (𝐶cat 𝐻)
Assertion
Ref Expression
rescval ((𝐶𝑉𝐻𝑊) → 𝐷 = ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩))

Proof of Theorem rescval
Dummy variables 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rescval.1 . 2 𝐷 = (𝐶cat 𝐻)
2 elex 3509 . . 3 (𝐶𝑉𝐶 ∈ V)
3 elex 3509 . . 3 (𝐻𝑊𝐻 ∈ V)
4 simpl 482 . . . . . 6 ((𝑐 = 𝐶 = 𝐻) → 𝑐 = 𝐶)
5 simpr 484 . . . . . . . 8 ((𝑐 = 𝐶 = 𝐻) → = 𝐻)
65dmeqd 5930 . . . . . . 7 ((𝑐 = 𝐶 = 𝐻) → dom = dom 𝐻)
76dmeqd 5930 . . . . . 6 ((𝑐 = 𝐶 = 𝐻) → dom dom = dom dom 𝐻)
84, 7oveq12d 7466 . . . . 5 ((𝑐 = 𝐶 = 𝐻) → (𝑐s dom dom ) = (𝐶s dom dom 𝐻))
95opeq2d 4904 . . . . 5 ((𝑐 = 𝐶 = 𝐻) → ⟨(Hom ‘ndx), ⟩ = ⟨(Hom ‘ndx), 𝐻⟩)
108, 9oveq12d 7466 . . . 4 ((𝑐 = 𝐶 = 𝐻) → ((𝑐s dom dom ) sSet ⟨(Hom ‘ndx), ⟩) = ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩))
11 df-resc 17872 . . . 4 cat = (𝑐 ∈ V, ∈ V ↦ ((𝑐s dom dom ) sSet ⟨(Hom ‘ndx), ⟩))
12 ovex 7481 . . . 4 ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V
1310, 11, 12ovmpoa 7605 . . 3 ((𝐶 ∈ V ∧ 𝐻 ∈ V) → (𝐶cat 𝐻) = ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩))
142, 3, 13syl2an 595 . 2 ((𝐶𝑉𝐻𝑊) → (𝐶cat 𝐻) = ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩))
151, 14eqtrid 2792 1 ((𝐶𝑉𝐻𝑊) → 𝐷 = ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cop 4654  dom cdm 5700  cfv 6573  (class class class)co 7448   sSet csts 17210  ndxcnx 17240  s cress 17287  Hom chom 17322  cat cresc 17869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-resc 17872
This theorem is referenced by:  rescval2  17889
  Copyright terms: Public domain W3C validator