Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rescval | Structured version Visualization version GIF version |
Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rescval.1 | ⊢ 𝐷 = (𝐶 ↾cat 𝐻) |
Ref | Expression |
---|---|
rescval | ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐻 ∈ 𝑊) → 𝐷 = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescval.1 | . 2 ⊢ 𝐷 = (𝐶 ↾cat 𝐻) | |
2 | elex 3450 | . . 3 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
3 | elex 3450 | . . 3 ⊢ (𝐻 ∈ 𝑊 → 𝐻 ∈ V) | |
4 | simpl 483 | . . . . . 6 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → 𝑐 = 𝐶) | |
5 | simpr 485 | . . . . . . . 8 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → ℎ = 𝐻) | |
6 | 5 | dmeqd 5814 | . . . . . . 7 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → dom ℎ = dom 𝐻) |
7 | 6 | dmeqd 5814 | . . . . . 6 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → dom dom ℎ = dom dom 𝐻) |
8 | 4, 7 | oveq12d 7293 | . . . . 5 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → (𝑐 ↾s dom dom ℎ) = (𝐶 ↾s dom dom 𝐻)) |
9 | 5 | opeq2d 4811 | . . . . 5 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → 〈(Hom ‘ndx), ℎ〉 = 〈(Hom ‘ndx), 𝐻〉) |
10 | 8, 9 | oveq12d 7293 | . . . 4 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → ((𝑐 ↾s dom dom ℎ) sSet 〈(Hom ‘ndx), ℎ〉) = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
11 | df-resc 17523 | . . . 4 ⊢ ↾cat = (𝑐 ∈ V, ℎ ∈ V ↦ ((𝑐 ↾s dom dom ℎ) sSet 〈(Hom ‘ndx), ℎ〉)) | |
12 | ovex 7308 | . . . 4 ⊢ ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉) ∈ V | |
13 | 10, 11, 12 | ovmpoa 7428 | . . 3 ⊢ ((𝐶 ∈ V ∧ 𝐻 ∈ V) → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
14 | 2, 3, 13 | syl2an 596 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐻 ∈ 𝑊) → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
15 | 1, 14 | eqtrid 2790 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐻 ∈ 𝑊) → 𝐷 = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 〈cop 4567 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 sSet csts 16864 ndxcnx 16894 ↾s cress 16941 Hom chom 16973 ↾cat cresc 17520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-resc 17523 |
This theorem is referenced by: rescval2 17540 |
Copyright terms: Public domain | W3C validator |