MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescval Structured version   Visualization version   GIF version

Theorem rescval 17781
Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypothesis
Ref Expression
rescval.1 𝐷 = (𝐢 β†Ύcat 𝐻)
Assertion
Ref Expression
rescval ((𝐢 ∈ 𝑉 ∧ 𝐻 ∈ π‘Š) β†’ 𝐷 = ((𝐢 β†Ύs dom dom 𝐻) sSet ⟨(Hom β€˜ndx), 𝐻⟩))

Proof of Theorem rescval
Dummy variables β„Ž 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rescval.1 . 2 𝐷 = (𝐢 β†Ύcat 𝐻)
2 elex 3492 . . 3 (𝐢 ∈ 𝑉 β†’ 𝐢 ∈ V)
3 elex 3492 . . 3 (𝐻 ∈ π‘Š β†’ 𝐻 ∈ V)
4 simpl 482 . . . . . 6 ((𝑐 = 𝐢 ∧ β„Ž = 𝐻) β†’ 𝑐 = 𝐢)
5 simpr 484 . . . . . . . 8 ((𝑐 = 𝐢 ∧ β„Ž = 𝐻) β†’ β„Ž = 𝐻)
65dmeqd 5905 . . . . . . 7 ((𝑐 = 𝐢 ∧ β„Ž = 𝐻) β†’ dom β„Ž = dom 𝐻)
76dmeqd 5905 . . . . . 6 ((𝑐 = 𝐢 ∧ β„Ž = 𝐻) β†’ dom dom β„Ž = dom dom 𝐻)
84, 7oveq12d 7430 . . . . 5 ((𝑐 = 𝐢 ∧ β„Ž = 𝐻) β†’ (𝑐 β†Ύs dom dom β„Ž) = (𝐢 β†Ύs dom dom 𝐻))
95opeq2d 4880 . . . . 5 ((𝑐 = 𝐢 ∧ β„Ž = 𝐻) β†’ ⟨(Hom β€˜ndx), β„ŽβŸ© = ⟨(Hom β€˜ndx), 𝐻⟩)
108, 9oveq12d 7430 . . . 4 ((𝑐 = 𝐢 ∧ β„Ž = 𝐻) β†’ ((𝑐 β†Ύs dom dom β„Ž) sSet ⟨(Hom β€˜ndx), β„ŽβŸ©) = ((𝐢 β†Ύs dom dom 𝐻) sSet ⟨(Hom β€˜ndx), 𝐻⟩))
11 df-resc 17765 . . . 4 β†Ύcat = (𝑐 ∈ V, β„Ž ∈ V ↦ ((𝑐 β†Ύs dom dom β„Ž) sSet ⟨(Hom β€˜ndx), β„ŽβŸ©))
12 ovex 7445 . . . 4 ((𝐢 β†Ύs dom dom 𝐻) sSet ⟨(Hom β€˜ndx), 𝐻⟩) ∈ V
1310, 11, 12ovmpoa 7566 . . 3 ((𝐢 ∈ V ∧ 𝐻 ∈ V) β†’ (𝐢 β†Ύcat 𝐻) = ((𝐢 β†Ύs dom dom 𝐻) sSet ⟨(Hom β€˜ndx), 𝐻⟩))
142, 3, 13syl2an 595 . 2 ((𝐢 ∈ 𝑉 ∧ 𝐻 ∈ π‘Š) β†’ (𝐢 β†Ύcat 𝐻) = ((𝐢 β†Ύs dom dom 𝐻) sSet ⟨(Hom β€˜ndx), 𝐻⟩))
151, 14eqtrid 2783 1 ((𝐢 ∈ 𝑉 ∧ 𝐻 ∈ π‘Š) β†’ 𝐷 = ((𝐢 β†Ύs dom dom 𝐻) sSet ⟨(Hom β€˜ndx), 𝐻⟩))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  Vcvv 3473  βŸ¨cop 4634  dom cdm 5676  β€˜cfv 6543  (class class class)co 7412   sSet csts 17103  ndxcnx 17133   β†Ύs cress 17180  Hom chom 17215   β†Ύcat cresc 17762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-resc 17765
This theorem is referenced by:  rescval2  17782
  Copyright terms: Public domain W3C validator