| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rescval | Structured version Visualization version GIF version | ||
| Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| rescval.1 | ⊢ 𝐷 = (𝐶 ↾cat 𝐻) |
| Ref | Expression |
|---|---|
| rescval | ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐻 ∈ 𝑊) → 𝐷 = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescval.1 | . 2 ⊢ 𝐷 = (𝐶 ↾cat 𝐻) | |
| 2 | elex 3484 | . . 3 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
| 3 | elex 3484 | . . 3 ⊢ (𝐻 ∈ 𝑊 → 𝐻 ∈ V) | |
| 4 | simpl 482 | . . . . . 6 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → 𝑐 = 𝐶) | |
| 5 | simpr 484 | . . . . . . . 8 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → ℎ = 𝐻) | |
| 6 | 5 | dmeqd 5896 | . . . . . . 7 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → dom ℎ = dom 𝐻) |
| 7 | 6 | dmeqd 5896 | . . . . . 6 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → dom dom ℎ = dom dom 𝐻) |
| 8 | 4, 7 | oveq12d 7431 | . . . . 5 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → (𝑐 ↾s dom dom ℎ) = (𝐶 ↾s dom dom 𝐻)) |
| 9 | 5 | opeq2d 4860 | . . . . 5 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → 〈(Hom ‘ndx), ℎ〉 = 〈(Hom ‘ndx), 𝐻〉) |
| 10 | 8, 9 | oveq12d 7431 | . . . 4 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → ((𝑐 ↾s dom dom ℎ) sSet 〈(Hom ‘ndx), ℎ〉) = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| 11 | df-resc 17826 | . . . 4 ⊢ ↾cat = (𝑐 ∈ V, ℎ ∈ V ↦ ((𝑐 ↾s dom dom ℎ) sSet 〈(Hom ‘ndx), ℎ〉)) | |
| 12 | ovex 7446 | . . . 4 ⊢ ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉) ∈ V | |
| 13 | 10, 11, 12 | ovmpoa 7570 | . . 3 ⊢ ((𝐶 ∈ V ∧ 𝐻 ∈ V) → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| 14 | 2, 3, 13 | syl2an 596 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐻 ∈ 𝑊) → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| 15 | 1, 14 | eqtrid 2781 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐻 ∈ 𝑊) → 𝐷 = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 〈cop 4612 dom cdm 5665 ‘cfv 6541 (class class class)co 7413 sSet csts 17182 ndxcnx 17212 ↾s cress 17252 Hom chom 17284 ↾cat cresc 17823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-resc 17826 |
| This theorem is referenced by: rescval2 17843 |
| Copyright terms: Public domain | W3C validator |