MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescval Structured version   Visualization version   GIF version

Theorem rescval 17842
Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypothesis
Ref Expression
rescval.1 𝐷 = (𝐶cat 𝐻)
Assertion
Ref Expression
rescval ((𝐶𝑉𝐻𝑊) → 𝐷 = ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩))

Proof of Theorem rescval
Dummy variables 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rescval.1 . 2 𝐷 = (𝐶cat 𝐻)
2 elex 3484 . . 3 (𝐶𝑉𝐶 ∈ V)
3 elex 3484 . . 3 (𝐻𝑊𝐻 ∈ V)
4 simpl 482 . . . . . 6 ((𝑐 = 𝐶 = 𝐻) → 𝑐 = 𝐶)
5 simpr 484 . . . . . . . 8 ((𝑐 = 𝐶 = 𝐻) → = 𝐻)
65dmeqd 5896 . . . . . . 7 ((𝑐 = 𝐶 = 𝐻) → dom = dom 𝐻)
76dmeqd 5896 . . . . . 6 ((𝑐 = 𝐶 = 𝐻) → dom dom = dom dom 𝐻)
84, 7oveq12d 7431 . . . . 5 ((𝑐 = 𝐶 = 𝐻) → (𝑐s dom dom ) = (𝐶s dom dom 𝐻))
95opeq2d 4860 . . . . 5 ((𝑐 = 𝐶 = 𝐻) → ⟨(Hom ‘ndx), ⟩ = ⟨(Hom ‘ndx), 𝐻⟩)
108, 9oveq12d 7431 . . . 4 ((𝑐 = 𝐶 = 𝐻) → ((𝑐s dom dom ) sSet ⟨(Hom ‘ndx), ⟩) = ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩))
11 df-resc 17826 . . . 4 cat = (𝑐 ∈ V, ∈ V ↦ ((𝑐s dom dom ) sSet ⟨(Hom ‘ndx), ⟩))
12 ovex 7446 . . . 4 ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V
1310, 11, 12ovmpoa 7570 . . 3 ((𝐶 ∈ V ∧ 𝐻 ∈ V) → (𝐶cat 𝐻) = ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩))
142, 3, 13syl2an 596 . 2 ((𝐶𝑉𝐻𝑊) → (𝐶cat 𝐻) = ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩))
151, 14eqtrid 2781 1 ((𝐶𝑉𝐻𝑊) → 𝐷 = ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  cop 4612  dom cdm 5665  cfv 6541  (class class class)co 7413   sSet csts 17182  ndxcnx 17212  s cress 17252  Hom chom 17284  cat cresc 17823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-resc 17826
This theorem is referenced by:  rescval2  17843
  Copyright terms: Public domain W3C validator