![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rescval | Structured version Visualization version GIF version |
Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rescval.1 | β’ π· = (πΆ βΎcat π») |
Ref | Expression |
---|---|
rescval | β’ ((πΆ β π β§ π» β π) β π· = ((πΆ βΎs dom dom π») sSet β¨(Hom βndx), π»β©)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescval.1 | . 2 β’ π· = (πΆ βΎcat π») | |
2 | elex 3492 | . . 3 β’ (πΆ β π β πΆ β V) | |
3 | elex 3492 | . . 3 β’ (π» β π β π» β V) | |
4 | simpl 482 | . . . . . 6 β’ ((π = πΆ β§ β = π») β π = πΆ) | |
5 | simpr 484 | . . . . . . . 8 β’ ((π = πΆ β§ β = π») β β = π») | |
6 | 5 | dmeqd 5905 | . . . . . . 7 β’ ((π = πΆ β§ β = π») β dom β = dom π») |
7 | 6 | dmeqd 5905 | . . . . . 6 β’ ((π = πΆ β§ β = π») β dom dom β = dom dom π») |
8 | 4, 7 | oveq12d 7430 | . . . . 5 β’ ((π = πΆ β§ β = π») β (π βΎs dom dom β) = (πΆ βΎs dom dom π»)) |
9 | 5 | opeq2d 4880 | . . . . 5 β’ ((π = πΆ β§ β = π») β β¨(Hom βndx), ββ© = β¨(Hom βndx), π»β©) |
10 | 8, 9 | oveq12d 7430 | . . . 4 β’ ((π = πΆ β§ β = π») β ((π βΎs dom dom β) sSet β¨(Hom βndx), ββ©) = ((πΆ βΎs dom dom π») sSet β¨(Hom βndx), π»β©)) |
11 | df-resc 17765 | . . . 4 β’ βΎcat = (π β V, β β V β¦ ((π βΎs dom dom β) sSet β¨(Hom βndx), ββ©)) | |
12 | ovex 7445 | . . . 4 β’ ((πΆ βΎs dom dom π») sSet β¨(Hom βndx), π»β©) β V | |
13 | 10, 11, 12 | ovmpoa 7566 | . . 3 β’ ((πΆ β V β§ π» β V) β (πΆ βΎcat π») = ((πΆ βΎs dom dom π») sSet β¨(Hom βndx), π»β©)) |
14 | 2, 3, 13 | syl2an 595 | . 2 β’ ((πΆ β π β§ π» β π) β (πΆ βΎcat π») = ((πΆ βΎs dom dom π») sSet β¨(Hom βndx), π»β©)) |
15 | 1, 14 | eqtrid 2783 | 1 β’ ((πΆ β π β§ π» β π) β π· = ((πΆ βΎs dom dom π») sSet β¨(Hom βndx), π»β©)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 Vcvv 3473 β¨cop 4634 dom cdm 5676 βcfv 6543 (class class class)co 7412 sSet csts 17103 ndxcnx 17133 βΎs cress 17180 Hom chom 17215 βΎcat cresc 17762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-resc 17765 |
This theorem is referenced by: rescval2 17782 |
Copyright terms: Public domain | W3C validator |