MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescval Structured version   Visualization version   GIF version

Theorem rescval 17736
Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypothesis
Ref Expression
rescval.1 𝐷 = (𝐶cat 𝐻)
Assertion
Ref Expression
rescval ((𝐶𝑉𝐻𝑊) → 𝐷 = ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩))

Proof of Theorem rescval
Dummy variables 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rescval.1 . 2 𝐷 = (𝐶cat 𝐻)
2 elex 3458 . . 3 (𝐶𝑉𝐶 ∈ V)
3 elex 3458 . . 3 (𝐻𝑊𝐻 ∈ V)
4 simpl 482 . . . . . 6 ((𝑐 = 𝐶 = 𝐻) → 𝑐 = 𝐶)
5 simpr 484 . . . . . . . 8 ((𝑐 = 𝐶 = 𝐻) → = 𝐻)
65dmeqd 5849 . . . . . . 7 ((𝑐 = 𝐶 = 𝐻) → dom = dom 𝐻)
76dmeqd 5849 . . . . . 6 ((𝑐 = 𝐶 = 𝐻) → dom dom = dom dom 𝐻)
84, 7oveq12d 7370 . . . . 5 ((𝑐 = 𝐶 = 𝐻) → (𝑐s dom dom ) = (𝐶s dom dom 𝐻))
95opeq2d 4831 . . . . 5 ((𝑐 = 𝐶 = 𝐻) → ⟨(Hom ‘ndx), ⟩ = ⟨(Hom ‘ndx), 𝐻⟩)
108, 9oveq12d 7370 . . . 4 ((𝑐 = 𝐶 = 𝐻) → ((𝑐s dom dom ) sSet ⟨(Hom ‘ndx), ⟩) = ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩))
11 df-resc 17720 . . . 4 cat = (𝑐 ∈ V, ∈ V ↦ ((𝑐s dom dom ) sSet ⟨(Hom ‘ndx), ⟩))
12 ovex 7385 . . . 4 ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V
1310, 11, 12ovmpoa 7507 . . 3 ((𝐶 ∈ V ∧ 𝐻 ∈ V) → (𝐶cat 𝐻) = ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩))
142, 3, 13syl2an 596 . 2 ((𝐶𝑉𝐻𝑊) → (𝐶cat 𝐻) = ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩))
151, 14eqtrid 2780 1 ((𝐶𝑉𝐻𝑊) → 𝐷 = ((𝐶s dom dom 𝐻) sSet ⟨(Hom ‘ndx), 𝐻⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cop 4581  dom cdm 5619  cfv 6486  (class class class)co 7352   sSet csts 17076  ndxcnx 17106  s cress 17143  Hom chom 17174  cat cresc 17717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-resc 17720
This theorem is referenced by:  rescval2  17737
  Copyright terms: Public domain W3C validator