Detailed syntax breakdown of Definition df-ssc
Step | Hyp | Ref
| Expression |
1 | | cssc 17519 |
. 2
class
⊆cat |
2 | | vj |
. . . . . . 7
setvar 𝑗 |
3 | 2 | cv 1538 |
. . . . . 6
class 𝑗 |
4 | | vt |
. . . . . . . 8
setvar 𝑡 |
5 | 4 | cv 1538 |
. . . . . . 7
class 𝑡 |
6 | 5, 5 | cxp 5587 |
. . . . . 6
class (𝑡 × 𝑡) |
7 | 3, 6 | wfn 6428 |
. . . . 5
wff 𝑗 Fn (𝑡 × 𝑡) |
8 | | vh |
. . . . . . . 8
setvar ℎ |
9 | 8 | cv 1538 |
. . . . . . 7
class ℎ |
10 | | vx |
. . . . . . . 8
setvar 𝑥 |
11 | | vs |
. . . . . . . . . 10
setvar 𝑠 |
12 | 11 | cv 1538 |
. . . . . . . . 9
class 𝑠 |
13 | 12, 12 | cxp 5587 |
. . . . . . . 8
class (𝑠 × 𝑠) |
14 | 10 | cv 1538 |
. . . . . . . . . 10
class 𝑥 |
15 | 14, 3 | cfv 6433 |
. . . . . . . . 9
class (𝑗‘𝑥) |
16 | 15 | cpw 4533 |
. . . . . . . 8
class 𝒫
(𝑗‘𝑥) |
17 | 10, 13, 16 | cixp 8685 |
. . . . . . 7
class X𝑥 ∈
(𝑠 × 𝑠)𝒫 (𝑗‘𝑥) |
18 | 9, 17 | wcel 2106 |
. . . . . 6
wff ℎ ∈ X𝑥 ∈
(𝑠 × 𝑠)𝒫 (𝑗‘𝑥) |
19 | 5 | cpw 4533 |
. . . . . 6
class 𝒫
𝑡 |
20 | 18, 11, 19 | wrex 3065 |
. . . . 5
wff
∃𝑠 ∈
𝒫 𝑡ℎ ∈ X𝑥 ∈
(𝑠 × 𝑠)𝒫 (𝑗‘𝑥) |
21 | 7, 20 | wa 396 |
. . . 4
wff (𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡ℎ ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗‘𝑥)) |
22 | 21, 4 | wex 1782 |
. . 3
wff
∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡ℎ ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗‘𝑥)) |
23 | 22, 8, 2 | copab 5136 |
. 2
class
{〈ℎ, 𝑗〉 ∣ ∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡ℎ ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗‘𝑥))} |
24 | 1, 23 | wceq 1539 |
1
wff
⊆cat = {〈ℎ, 𝑗〉 ∣ ∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡ℎ ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗‘𝑥))} |