Detailed syntax breakdown of Definition df-ssc
| Step | Hyp | Ref
| Expression |
| 1 | | cssc 17851 |
. 2
class
⊆cat |
| 2 | | vj |
. . . . . . 7
setvar 𝑗 |
| 3 | 2 | cv 1539 |
. . . . . 6
class 𝑗 |
| 4 | | vt |
. . . . . . . 8
setvar 𝑡 |
| 5 | 4 | cv 1539 |
. . . . . . 7
class 𝑡 |
| 6 | 5, 5 | cxp 5683 |
. . . . . 6
class (𝑡 × 𝑡) |
| 7 | 3, 6 | wfn 6556 |
. . . . 5
wff 𝑗 Fn (𝑡 × 𝑡) |
| 8 | | vh |
. . . . . . . 8
setvar ℎ |
| 9 | 8 | cv 1539 |
. . . . . . 7
class ℎ |
| 10 | | vx |
. . . . . . . 8
setvar 𝑥 |
| 11 | | vs |
. . . . . . . . . 10
setvar 𝑠 |
| 12 | 11 | cv 1539 |
. . . . . . . . 9
class 𝑠 |
| 13 | 12, 12 | cxp 5683 |
. . . . . . . 8
class (𝑠 × 𝑠) |
| 14 | 10 | cv 1539 |
. . . . . . . . . 10
class 𝑥 |
| 15 | 14, 3 | cfv 6561 |
. . . . . . . . 9
class (𝑗‘𝑥) |
| 16 | 15 | cpw 4600 |
. . . . . . . 8
class 𝒫
(𝑗‘𝑥) |
| 17 | 10, 13, 16 | cixp 8937 |
. . . . . . 7
class X𝑥 ∈
(𝑠 × 𝑠)𝒫 (𝑗‘𝑥) |
| 18 | 9, 17 | wcel 2108 |
. . . . . 6
wff ℎ ∈ X𝑥 ∈
(𝑠 × 𝑠)𝒫 (𝑗‘𝑥) |
| 19 | 5 | cpw 4600 |
. . . . . 6
class 𝒫
𝑡 |
| 20 | 18, 11, 19 | wrex 3070 |
. . . . 5
wff
∃𝑠 ∈
𝒫 𝑡ℎ ∈ X𝑥 ∈
(𝑠 × 𝑠)𝒫 (𝑗‘𝑥) |
| 21 | 7, 20 | wa 395 |
. . . 4
wff (𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡ℎ ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗‘𝑥)) |
| 22 | 21, 4 | wex 1779 |
. . 3
wff
∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡ℎ ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗‘𝑥)) |
| 23 | 22, 8, 2 | copab 5205 |
. 2
class
{〈ℎ, 𝑗〉 ∣ ∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡ℎ ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗‘𝑥))} |
| 24 | 1, 23 | wceq 1540 |
1
wff
⊆cat = {〈ℎ, 𝑗〉 ∣ ∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡ℎ ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗‘𝑥))} |