Detailed syntax breakdown of Definition df-resf
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cresf 17903 | . 2
class 
↾f | 
| 2 |  | vf | . . 3
setvar 𝑓 | 
| 3 |  | vh | . . 3
setvar ℎ | 
| 4 |  | cvv 3479 | . . 3
class
V | 
| 5 | 2 | cv 1538 | . . . . . 6
class 𝑓 | 
| 6 |  | c1st 8013 | . . . . . 6
class
1st | 
| 7 | 5, 6 | cfv 6560 | . . . . 5
class
(1st ‘𝑓) | 
| 8 | 3 | cv 1538 | . . . . . . 7
class ℎ | 
| 9 | 8 | cdm 5684 | . . . . . 6
class dom ℎ | 
| 10 | 9 | cdm 5684 | . . . . 5
class dom dom
ℎ | 
| 11 | 7, 10 | cres 5686 | . . . 4
class
((1st ‘𝑓) ↾ dom dom ℎ) | 
| 12 |  | vx | . . . . 5
setvar 𝑥 | 
| 13 | 12 | cv 1538 | . . . . . . 7
class 𝑥 | 
| 14 |  | c2nd 8014 | . . . . . . . 8
class
2nd | 
| 15 | 5, 14 | cfv 6560 | . . . . . . 7
class
(2nd ‘𝑓) | 
| 16 | 13, 15 | cfv 6560 | . . . . . 6
class
((2nd ‘𝑓)‘𝑥) | 
| 17 | 13, 8 | cfv 6560 | . . . . . 6
class (ℎ‘𝑥) | 
| 18 | 16, 17 | cres 5686 | . . . . 5
class
(((2nd ‘𝑓)‘𝑥) ↾ (ℎ‘𝑥)) | 
| 19 | 12, 9, 18 | cmpt 5224 | . . . 4
class (𝑥 ∈ dom ℎ ↦ (((2nd ‘𝑓)‘𝑥) ↾ (ℎ‘𝑥))) | 
| 20 | 11, 19 | cop 4631 | . . 3
class
〈((1st ‘𝑓) ↾ dom dom ℎ), (𝑥 ∈ dom ℎ ↦ (((2nd ‘𝑓)‘𝑥) ↾ (ℎ‘𝑥)))〉 | 
| 21 | 2, 3, 4, 4, 20 | cmpo 7434 | . 2
class (𝑓 ∈ V, ℎ ∈ V ↦ 〈((1st
‘𝑓) ↾ dom dom
ℎ), (𝑥 ∈ dom ℎ ↦ (((2nd ‘𝑓)‘𝑥) ↾ (ℎ‘𝑥)))〉) | 
| 22 | 1, 21 | wceq 1539 | 1
wff 
↾f = (𝑓 ∈ V, ℎ ∈ V ↦ 〈((1st
‘𝑓) ↾ dom dom
ℎ), (𝑥 ∈ dom ℎ ↦ (((2nd ‘𝑓)‘𝑥) ↾ (ℎ‘𝑥)))〉) |