| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-res | Structured version Visualization version GIF version | ||
| Description: Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, the expression (exp ↾ ℝ) (used in reeff1 16095) means "the exponential function e to the x, but the exponent x must be in the reals" (df-ef 16040 defines the exponential function, which normally allows the exponent to be a complex number). Another example is (𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉} (ex-res 30377). We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection (𝐴 ∩ (V × 𝐵)) or as the converse of the restricted converse (see cnvrescnv 6171). (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-res | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cres 5643 | . 2 class (𝐴 ↾ 𝐵) |
| 4 | cvv 3450 | . . . 4 class V | |
| 5 | 2, 4 | cxp 5639 | . . 3 class (𝐵 × V) |
| 6 | 1, 5 | cin 3916 | . 2 class (𝐴 ∩ (𝐵 × V)) |
| 7 | 3, 6 | wceq 1540 | 1 wff (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: inxpssres 5658 reseq1 5947 reseq2 5948 nfres 5955 csbres 5956 res0 5957 dfres3 5958 opelres 5959 resres 5966 resundi 5967 resundir 5968 resindi 5969 resindir 5970 inres 5971 resdifcom 5972 resiun1 5973 resiun2 5974 resss 5975 ssres 5977 ssres2 5978 relres 5979 xpssres 5992 elres 5994 resopab 6008 elrid 6020 imainrect 6157 xpima 6158 cnvcnv2 6169 cnvrescnv 6171 resdmres 6208 resdifdi 6212 resdifdir 6213 ressnop0 7128 fndifnfp 7153 tpres 7178 marypha1lem 9391 gsum2d 19909 gsumxp 19913 pjdm 21623 hausdiag 23539 isngp2 24492 ovoliunlem1 25410 nosupbnd2lem1 27634 noetasuplem3 27654 noetasuplem4 27655 xpdisjres 32534 difres 32536 imadifxp 32537 0res 32539 mbfmcst 34257 0rrv 34449 elrn3 35756 dfon4 35888 bj-opelresdm 37140 bj-idres 37155 bj-elid6 37165 br1cnvres 38265 restrreld 43663 csbresgVD 44891 |
| Copyright terms: Public domain | W3C validator |