| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-res | Structured version Visualization version GIF version | ||
| Description: Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, the expression (exp ↾ ℝ) (used in reeff1 16088) means "the exponential function e to the x, but the exponent x must be in the reals" (df-ef 16033 defines the exponential function, which normally allows the exponent to be a complex number). Another example is (𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉} (ex-res 30370). We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection (𝐴 ∩ (V × 𝐵)) or as the converse of the restricted converse (see cnvrescnv 6168). (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-res | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cres 5640 | . 2 class (𝐴 ↾ 𝐵) |
| 4 | cvv 3447 | . . . 4 class V | |
| 5 | 2, 4 | cxp 5636 | . . 3 class (𝐵 × V) |
| 6 | 1, 5 | cin 3913 | . 2 class (𝐴 ∩ (𝐵 × V)) |
| 7 | 3, 6 | wceq 1540 | 1 wff (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: inxpssres 5655 reseq1 5944 reseq2 5945 nfres 5952 csbres 5953 res0 5954 dfres3 5955 opelres 5956 resres 5963 resundi 5964 resundir 5965 resindi 5966 resindir 5967 inres 5968 resdifcom 5969 resiun1 5970 resiun2 5971 resss 5972 ssres 5974 ssres2 5975 relres 5976 xpssres 5989 elres 5991 resopab 6005 elrid 6017 imainrect 6154 xpima 6155 cnvcnv2 6166 cnvrescnv 6168 resdmres 6205 resdifdi 6209 resdifdir 6210 ressnop0 7125 fndifnfp 7150 tpres 7175 marypha1lem 9384 gsum2d 19902 gsumxp 19906 pjdm 21616 hausdiag 23532 isngp2 24485 ovoliunlem1 25403 nosupbnd2lem1 27627 noetasuplem3 27647 noetasuplem4 27648 xpdisjres 32527 difres 32529 imadifxp 32530 0res 32532 mbfmcst 34250 0rrv 34442 elrn3 35749 dfon4 35881 bj-opelresdm 37133 bj-idres 37148 bj-elid6 37158 br1cnvres 38258 restrreld 43656 csbresgVD 44884 |
| Copyright terms: Public domain | W3C validator |