![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-res | Structured version Visualization version GIF version |
Description: Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, the expression (exp ↾ ℝ) (used in reeff1 16067) means "the exponential function e to the x, but the exponent x must be in the reals" (df-ef 16015 defines the exponential function, which normally allows the exponent to be a complex number). Another example is (𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {⟨2, 6⟩} (ex-res 29949). We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection (𝐴 ∩ (V × 𝐵)) or as the converse of the restricted converse (see cnvrescnv 6194). (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
df-res | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cres 5678 | . 2 class (𝐴 ↾ 𝐵) |
4 | cvv 3474 | . . . 4 class V | |
5 | 2, 4 | cxp 5674 | . . 3 class (𝐵 × V) |
6 | 1, 5 | cin 3947 | . 2 class (𝐴 ∩ (𝐵 × V)) |
7 | 3, 6 | wceq 1541 | 1 wff (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Colors of variables: wff setvar class |
This definition is referenced by: inxpssres 5693 reseq1 5975 reseq2 5976 nfres 5983 csbres 5984 res0 5985 dfres3 5986 opelres 5987 resres 5994 resundi 5995 resundir 5996 resindi 5997 resindir 5998 inres 5999 resdifcom 6000 resiun1 6001 resiun2 6002 resss 6006 ssres 6008 ssres2 6009 relres 6010 xpssres 6018 elres 6020 resopab 6034 elrid 6045 imainrect 6180 xpima 6181 cnvcnv2 6192 cnvrescnv 6194 resdmres 6231 resdifdi 6235 resdifdir 6236 ressnop0 7153 fndifnfp 7176 tpres 7204 marypha1lem 9430 gsum2d 19881 gsumxp 19885 pjdm 21481 hausdiag 23369 isngp2 24326 ovoliunlem1 25243 nosupbnd2lem1 27442 noetasuplem3 27462 noetasuplem4 27463 xpdisjres 32084 difres 32086 imadifxp 32087 0res 32089 mbfmcst 33544 0rrv 33736 elrn3 35024 dfon4 35157 bj-opelresdm 36329 bj-idres 36344 bj-elid6 36354 br1cnvres 37440 restrreld 42720 csbresgVD 43958 |
Copyright terms: Public domain | W3C validator |