| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-res | Structured version Visualization version GIF version | ||
| Description: Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, the expression (exp ↾ ℝ) (used in reeff1 16136) means "the exponential function e to the x, but the exponent x must be in the reals" (df-ef 16081 defines the exponential function, which normally allows the exponent to be a complex number). Another example is (𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉} (ex-res 30368). We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection (𝐴 ∩ (V × 𝐵)) or as the converse of the restricted converse (see cnvrescnv 6184). (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-res | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cres 5656 | . 2 class (𝐴 ↾ 𝐵) |
| 4 | cvv 3459 | . . . 4 class V | |
| 5 | 2, 4 | cxp 5652 | . . 3 class (𝐵 × V) |
| 6 | 1, 5 | cin 3925 | . 2 class (𝐴 ∩ (𝐵 × V)) |
| 7 | 3, 6 | wceq 1540 | 1 wff (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: inxpssres 5671 reseq1 5960 reseq2 5961 nfres 5968 csbres 5969 res0 5970 dfres3 5971 opelres 5972 resres 5979 resundi 5980 resundir 5981 resindi 5982 resindir 5983 inres 5984 resdifcom 5985 resiun1 5986 resiun2 5987 resss 5988 ssres 5990 ssres2 5991 relres 5992 xpssres 6005 elres 6007 resopab 6021 elrid 6033 imainrect 6170 xpima 6171 cnvcnv2 6182 cnvrescnv 6184 resdmres 6221 resdifdi 6225 resdifdir 6226 ressnop0 7142 fndifnfp 7167 tpres 7192 marypha1lem 9443 gsum2d 19951 gsumxp 19955 pjdm 21665 hausdiag 23581 isngp2 24534 ovoliunlem1 25453 nosupbnd2lem1 27677 noetasuplem3 27697 noetasuplem4 27698 xpdisjres 32525 difres 32527 imadifxp 32528 0res 32530 mbfmcst 34237 0rrv 34429 elrn3 35725 dfon4 35857 bj-opelresdm 37109 bj-idres 37124 bj-elid6 37134 br1cnvres 38233 restrreld 43638 csbresgVD 44867 |
| Copyright terms: Public domain | W3C validator |