![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-res | Structured version Visualization version GIF version |
Description: Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, the expression (exp ↾ ℝ) (used in reeff1 16063) means "the exponential function e to the x, but the exponent x must be in the reals" (df-ef 16011 defines the exponential function, which normally allows the exponent to be a complex number). Another example is (𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {⟨2, 6⟩} (ex-res 29694). We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection (𝐴 ∩ (V × 𝐵)) or as the converse of the restricted converse (see cnvrescnv 6195). (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
df-res | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cres 5679 | . 2 class (𝐴 ↾ 𝐵) |
4 | cvv 3475 | . . . 4 class V | |
5 | 2, 4 | cxp 5675 | . . 3 class (𝐵 × V) |
6 | 1, 5 | cin 3948 | . 2 class (𝐴 ∩ (𝐵 × V)) |
7 | 3, 6 | wceq 1542 | 1 wff (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Colors of variables: wff setvar class |
This definition is referenced by: inxpssres 5694 reseq1 5976 reseq2 5977 nfres 5984 csbres 5985 res0 5986 dfres3 5987 opelres 5988 resres 5995 resundi 5996 resundir 5997 resindi 5998 resindir 5999 inres 6000 resdifcom 6001 resiun1 6002 resiun2 6003 resss 6007 ssres 6009 ssres2 6010 relres 6011 xpssres 6019 elres 6021 resopab 6035 elrid 6046 imainrect 6181 xpima 6182 cnvcnv2 6193 cnvrescnv 6195 resdmres 6232 resdifdi 6236 resdifdir 6237 ressnop0 7151 fndifnfp 7174 tpres 7202 marypha1lem 9428 gsum2d 19840 gsumxp 19844 pjdm 21262 hausdiag 23149 isngp2 24106 ovoliunlem1 25019 nosupbnd2lem1 27218 noetasuplem3 27238 noetasuplem4 27239 xpdisjres 31829 difres 31831 imadifxp 31832 0res 31834 mbfmcst 33258 0rrv 33450 elrn3 34732 dfon4 34865 bj-opelresdm 36026 bj-idres 36041 bj-elid6 36051 br1cnvres 37137 restrreld 42418 csbresgVD 43656 |
Copyright terms: Public domain | W3C validator |