Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-res | Structured version Visualization version GIF version |
Description: Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, the expression (exp ↾ ℝ) (used in reeff1 15836) means "the exponential function e to the x, but the exponent x must be in the reals" (df-ef 15784 defines the exponential function, which normally allows the exponent to be a complex number). Another example is (𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉} (ex-res 28812). We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection (𝐴 ∩ (V × 𝐵)) or as the converse of the restricted converse (see cnvrescnv 6101). (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
df-res | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cres 5590 | . 2 class (𝐴 ↾ 𝐵) |
4 | cvv 3431 | . . . 4 class V | |
5 | 2, 4 | cxp 5586 | . . 3 class (𝐵 × V) |
6 | 1, 5 | cin 3885 | . 2 class (𝐴 ∩ (𝐵 × V)) |
7 | 3, 6 | wceq 1538 | 1 wff (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Colors of variables: wff setvar class |
This definition is referenced by: inxpssres 5605 reseq1 5886 reseq2 5887 nfres 5894 csbres 5895 res0 5896 dfres3 5897 opelres 5898 resres 5905 resundi 5906 resundir 5907 resindi 5908 resindir 5909 inres 5910 resdifcom 5911 resiun1 5912 resiun2 5913 resss 5917 ssres 5919 ssres2 5920 relres 5921 xpssres 5929 elres 5931 resopab 5943 elrid 5954 imainrect 6087 xpima 6088 cnvcnv2 6099 cnvrescnv 6101 resdmres 6138 resdifdi 6142 resdifdir 6143 ressnop0 7032 fndifnfp 7055 tpres 7083 marypha1lem 9199 gsum2d 19580 gsumxp 19584 pjdm 20921 hausdiag 22803 isngp2 23760 ovoliunlem1 24673 xpdisjres 30944 difres 30946 imadifxp 30947 0res 30950 mbfmcst 32233 0rrv 32425 elrn3 33736 nosupbnd2lem1 33925 noetasuplem3 33945 noetasuplem4 33946 dfon4 34202 bj-opelresdm 35323 bj-idres 35338 bj-elid6 35348 restrreld 41280 csbresgVD 42520 |
Copyright terms: Public domain | W3C validator |