![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-res | Structured version Visualization version GIF version |
Description: Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, the expression (exp ↾ ℝ) (used in reeff1 16152) means "the exponential function e to the x, but the exponent x must be in the reals" (df-ef 16099 defines the exponential function, which normally allows the exponent to be a complex number). Another example is (𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉} (ex-res 30469). We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection (𝐴 ∩ (V × 𝐵)) or as the converse of the restricted converse (see cnvrescnv 6216). (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
df-res | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cres 5690 | . 2 class (𝐴 ↾ 𝐵) |
4 | cvv 3477 | . . . 4 class V | |
5 | 2, 4 | cxp 5686 | . . 3 class (𝐵 × V) |
6 | 1, 5 | cin 3961 | . 2 class (𝐴 ∩ (𝐵 × V)) |
7 | 3, 6 | wceq 1536 | 1 wff (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Colors of variables: wff setvar class |
This definition is referenced by: inxpssres 5705 reseq1 5993 reseq2 5994 nfres 6001 csbres 6002 res0 6003 dfres3 6004 opelres 6005 resres 6012 resundi 6013 resundir 6014 resindi 6015 resindir 6016 inres 6017 resdifcom 6018 resiun1 6019 resiun2 6020 resss 6021 ssres 6023 ssres2 6024 relres 6025 xpssres 6037 elres 6039 resopab 6053 elrid 6065 imainrect 6202 xpima 6203 cnvcnv2 6214 cnvrescnv 6216 resdmres 6253 resdifdi 6257 resdifdir 6258 ressnop0 7172 fndifnfp 7195 tpres 7220 marypha1lem 9470 gsum2d 20004 gsumxp 20008 pjdm 21744 hausdiag 23668 isngp2 24625 ovoliunlem1 25550 nosupbnd2lem1 27774 noetasuplem3 27794 noetasuplem4 27795 xpdisjres 32617 difres 32619 imadifxp 32620 0res 32622 mbfmcst 34240 0rrv 34432 elrn3 35741 dfon4 35874 bj-opelresdm 37127 bj-idres 37142 bj-elid6 37152 br1cnvres 38250 restrreld 43656 csbresgVD 44892 |
Copyright terms: Public domain | W3C validator |