![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-res | Structured version Visualization version GIF version |
Description: Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, the expression (exp ↾ ℝ) (used in reeff1 16168) means "the exponential function e to the x, but the exponent x must be in the reals" (df-ef 16115 defines the exponential function, which normally allows the exponent to be a complex number). Another example is (𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉} (ex-res 30473). We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection (𝐴 ∩ (V × 𝐵)) or as the converse of the restricted converse (see cnvrescnv 6226). (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
df-res | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cres 5702 | . 2 class (𝐴 ↾ 𝐵) |
4 | cvv 3488 | . . . 4 class V | |
5 | 2, 4 | cxp 5698 | . . 3 class (𝐵 × V) |
6 | 1, 5 | cin 3975 | . 2 class (𝐴 ∩ (𝐵 × V)) |
7 | 3, 6 | wceq 1537 | 1 wff (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Colors of variables: wff setvar class |
This definition is referenced by: inxpssres 5717 reseq1 6003 reseq2 6004 nfres 6011 csbres 6012 res0 6013 dfres3 6014 opelres 6015 resres 6022 resundi 6023 resundir 6024 resindi 6025 resindir 6026 inres 6027 resdifcom 6028 resiun1 6029 resiun2 6030 resss 6031 ssres 6033 ssres2 6034 relres 6035 xpssres 6047 elres 6049 resopab 6063 elrid 6075 imainrect 6212 xpima 6213 cnvcnv2 6224 cnvrescnv 6226 resdmres 6263 resdifdi 6267 resdifdir 6268 ressnop0 7187 fndifnfp 7210 tpres 7238 marypha1lem 9502 gsum2d 20014 gsumxp 20018 pjdm 21750 hausdiag 23674 isngp2 24631 ovoliunlem1 25556 nosupbnd2lem1 27778 noetasuplem3 27798 noetasuplem4 27799 xpdisjres 32620 difres 32622 imadifxp 32623 0res 32625 mbfmcst 34224 0rrv 34416 elrn3 35724 dfon4 35857 bj-opelresdm 37111 bj-idres 37126 bj-elid6 37136 br1cnvres 38225 restrreld 43629 csbresgVD 44866 |
Copyright terms: Public domain | W3C validator |