Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-res | Structured version Visualization version GIF version |
Description: Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, the expression (exp ↾ ℝ) (used in reeff1 15920) means "the exponential function e to the x, but the exponent x must be in the reals" (df-ef 15868 defines the exponential function, which normally allows the exponent to be a complex number). Another example is (𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉} (ex-res 29006). We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection (𝐴 ∩ (V × 𝐵)) or as the converse of the restricted converse (see cnvrescnv 6127). (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
df-res | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cres 5616 | . 2 class (𝐴 ↾ 𝐵) |
4 | cvv 3441 | . . . 4 class V | |
5 | 2, 4 | cxp 5612 | . . 3 class (𝐵 × V) |
6 | 1, 5 | cin 3896 | . 2 class (𝐴 ∩ (𝐵 × V)) |
7 | 3, 6 | wceq 1540 | 1 wff (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Colors of variables: wff setvar class |
This definition is referenced by: inxpssres 5631 reseq1 5911 reseq2 5912 nfres 5919 csbres 5920 res0 5921 dfres3 5922 opelres 5923 resres 5930 resundi 5931 resundir 5932 resindi 5933 resindir 5934 inres 5935 resdifcom 5936 resiun1 5937 resiun2 5938 resss 5942 ssres 5944 ssres2 5945 relres 5946 xpssres 5954 elres 5956 resopab 5968 elrid 5979 imainrect 6113 xpima 6114 cnvcnv2 6125 cnvrescnv 6127 resdmres 6164 resdifdi 6168 resdifdir 6169 ressnop0 7075 fndifnfp 7098 tpres 7126 marypha1lem 9282 gsum2d 19660 gsumxp 19664 pjdm 21012 hausdiag 22894 isngp2 23851 ovoliunlem1 24764 nosupbnd2lem1 26961 noetasuplem3 26981 noetasuplem4 26982 xpdisjres 31137 difres 31139 imadifxp 31140 0res 31143 mbfmcst 32439 0rrv 32631 elrn3 33934 dfon4 34286 bj-opelresdm 35414 bj-idres 35429 bj-elid6 35439 br1cnvres 36527 restrreld 41585 csbresgVD 42825 |
Copyright terms: Public domain | W3C validator |