| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-res | Structured version Visualization version GIF version | ||
| Description: Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, the expression (exp ↾ ℝ) (used in reeff1 16031) means "the exponential function e to the x, but the exponent x must be in the reals" (df-ef 15976 defines the exponential function, which normally allows the exponent to be a complex number). Another example is (𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉} (ex-res 30423). We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection (𝐴 ∩ (V × 𝐵)) or as the converse of the restricted converse (see cnvrescnv 6147). (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-res | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cres 5621 | . 2 class (𝐴 ↾ 𝐵) |
| 4 | cvv 3437 | . . . 4 class V | |
| 5 | 2, 4 | cxp 5617 | . . 3 class (𝐵 × V) |
| 6 | 1, 5 | cin 3897 | . 2 class (𝐴 ∩ (𝐵 × V)) |
| 7 | 3, 6 | wceq 1541 | 1 wff (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: inxpssres 5636 reseq1 5926 reseq2 5927 nfres 5934 csbres 5935 res0 5936 dfres3 5937 opelres 5938 resres 5945 resundi 5946 resundir 5947 resindi 5948 resindir 5949 inres 5950 resdifcom 5951 resiun1 5952 resiun2 5953 resss 5954 ssres 5956 ssres2 5957 relres 5958 xpssres 5971 elres 5973 resopab 5987 elrid 5999 imainrect 6133 xpima 6134 cnvcnv2 6145 cnvrescnv 6147 resdmres 6184 resdifdi 6188 resdifdir 6189 ressnop0 7092 fndifnfp 7116 tpres 7141 marypha1lem 9324 gsum2d 19886 gsumxp 19890 pjdm 21646 hausdiag 23561 isngp2 24513 ovoliunlem1 25431 nosupbnd2lem1 27655 noetasuplem3 27675 noetasuplem4 27676 xpdisjres 32580 difres 32582 imadifxp 32583 0res 32585 mbfmcst 34293 0rrv 34485 elrn3 35827 dfon4 35956 bj-opelresdm 37210 bj-idres 37225 bj-elid6 37235 br1cnvres 38326 restrreld 43784 csbresgVD 45011 |
| Copyright terms: Public domain | W3C validator |