Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-res | Structured version Visualization version GIF version |
Description: Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, the expression (exp ↾ ℝ) (used in reeff1 15757) means "the exponential function e to the x, but the exponent x must be in the reals" (df-ef 15705 defines the exponential function, which normally allows the exponent to be a complex number). Another example is (𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉} (ex-res 28706). We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection (𝐴 ∩ (V × 𝐵)) or as the converse of the restricted converse (see cnvrescnv 6087). (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
df-res | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cres 5582 | . 2 class (𝐴 ↾ 𝐵) |
4 | cvv 3422 | . . . 4 class V | |
5 | 2, 4 | cxp 5578 | . . 3 class (𝐵 × V) |
6 | 1, 5 | cin 3882 | . 2 class (𝐴 ∩ (𝐵 × V)) |
7 | 3, 6 | wceq 1539 | 1 wff (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Colors of variables: wff setvar class |
This definition is referenced by: inxpssres 5597 reseq1 5874 reseq2 5875 nfres 5882 csbres 5883 res0 5884 dfres3 5885 opelres 5886 resres 5893 resundi 5894 resundir 5895 resindi 5896 resindir 5897 inres 5898 resdifcom 5899 resiun1 5900 resiun2 5901 resss 5905 ssres 5907 ssres2 5908 relres 5909 xpssres 5917 elres 5919 resopab 5931 elrid 5942 imainrect 6073 xpima 6074 cnvcnv2 6085 cnvrescnv 6087 resdmres 6124 resdifdi 6128 resdifdir 6129 ressnop0 7007 fndifnfp 7030 tpres 7058 marypha1lem 9122 gsum2d 19488 gsumxp 19492 pjdm 20824 hausdiag 22704 isngp2 23659 ovoliunlem1 24571 xpdisjres 30838 difres 30840 imadifxp 30841 0res 30844 mbfmcst 32126 0rrv 32318 elrn3 33635 nosupbnd2lem1 33845 noetasuplem3 33865 noetasuplem4 33866 dfon4 34122 bj-opelresdm 35243 bj-idres 35258 bj-elid6 35268 restrreld 41164 csbresgVD 42404 |
Copyright terms: Public domain | W3C validator |