| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-res | Structured version Visualization version GIF version | ||
| Description: Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, the expression (exp ↾ ℝ) (used in reeff1 16047) means "the exponential function e to the x, but the exponent x must be in the reals" (df-ef 15992 defines the exponential function, which normally allows the exponent to be a complex number). Another example is (𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉} (ex-res 30403). We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection (𝐴 ∩ (V × 𝐵)) or as the converse of the restricted converse (see cnvrescnv 6148). (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-res | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cres 5625 | . 2 class (𝐴 ↾ 𝐵) |
| 4 | cvv 3438 | . . . 4 class V | |
| 5 | 2, 4 | cxp 5621 | . . 3 class (𝐵 × V) |
| 6 | 1, 5 | cin 3904 | . 2 class (𝐴 ∩ (𝐵 × V)) |
| 7 | 3, 6 | wceq 1540 | 1 wff (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: inxpssres 5640 reseq1 5928 reseq2 5929 nfres 5936 csbres 5937 res0 5938 dfres3 5939 opelres 5940 resres 5947 resundi 5948 resundir 5949 resindi 5950 resindir 5951 inres 5952 resdifcom 5953 resiun1 5954 resiun2 5955 resss 5956 ssres 5958 ssres2 5959 relres 5960 xpssres 5973 elres 5975 resopab 5989 elrid 6001 imainrect 6134 xpima 6135 cnvcnv2 6146 cnvrescnv 6148 resdmres 6185 resdifdi 6189 resdifdir 6190 ressnop0 7091 fndifnfp 7116 tpres 7141 marypha1lem 9342 gsum2d 19869 gsumxp 19873 pjdm 21632 hausdiag 23548 isngp2 24501 ovoliunlem1 25419 nosupbnd2lem1 27643 noetasuplem3 27663 noetasuplem4 27664 xpdisjres 32560 difres 32562 imadifxp 32563 0res 32565 mbfmcst 34226 0rrv 34418 elrn3 35734 dfon4 35866 bj-opelresdm 37118 bj-idres 37133 bj-elid6 37143 br1cnvres 38243 restrreld 43640 csbresgVD 44868 |
| Copyright terms: Public domain | W3C validator |