| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-res | Structured version Visualization version GIF version | ||
| Description: Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, the expression (exp ↾ ℝ) (used in reeff1 16026) means "the exponential function e to the x, but the exponent x must be in the reals" (df-ef 15971 defines the exponential function, which normally allows the exponent to be a complex number). Another example is (𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉} (ex-res 30416). We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection (𝐴 ∩ (V × 𝐵)) or as the converse of the restricted converse (see cnvrescnv 6142). (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-res | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cres 5618 | . 2 class (𝐴 ↾ 𝐵) |
| 4 | cvv 3436 | . . . 4 class V | |
| 5 | 2, 4 | cxp 5614 | . . 3 class (𝐵 × V) |
| 6 | 1, 5 | cin 3901 | . 2 class (𝐴 ∩ (𝐵 × V)) |
| 7 | 3, 6 | wceq 1541 | 1 wff (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: inxpssres 5633 reseq1 5922 reseq2 5923 nfres 5930 csbres 5931 res0 5932 dfres3 5933 opelres 5934 resres 5941 resundi 5942 resundir 5943 resindi 5944 resindir 5945 inres 5946 resdifcom 5947 resiun1 5948 resiun2 5949 resss 5950 ssres 5952 ssres2 5953 relres 5954 xpssres 5967 elres 5969 resopab 5983 elrid 5995 imainrect 6128 xpima 6129 cnvcnv2 6140 cnvrescnv 6142 resdmres 6179 resdifdi 6183 resdifdir 6184 ressnop0 7086 fndifnfp 7110 tpres 7135 marypha1lem 9317 gsum2d 19882 gsumxp 19886 pjdm 21642 hausdiag 23558 isngp2 24510 ovoliunlem1 25428 nosupbnd2lem1 27652 noetasuplem3 27672 noetasuplem4 27673 xpdisjres 32573 difres 32575 imadifxp 32576 0res 32578 mbfmcst 34267 0rrv 34459 elrn3 35794 dfon4 35926 bj-opelresdm 37178 bj-idres 37193 bj-elid6 37203 br1cnvres 38303 restrreld 43699 csbresgVD 44926 |
| Copyright terms: Public domain | W3C validator |