MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfval Structured version   Visualization version   GIF version

Theorem resfval 17803
Description: Value of the functor restriction operator. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resfval.c (𝜑𝐹𝑉)
resfval.d (𝜑𝐻𝑊)
Assertion
Ref Expression
resfval (𝜑 → (𝐹f 𝐻) = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑥 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥)))⟩)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐻   𝜑,𝑥
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem resfval
Dummy variables 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-resf 17772 . . 3 f = (𝑓 ∈ V, ∈ V ↦ ⟨((1st𝑓) ↾ dom dom ), (𝑥 ∈ dom ↦ (((2nd𝑓)‘𝑥) ↾ (𝑥)))⟩)
21a1i 11 . 2 (𝜑 → ↾f = (𝑓 ∈ V, ∈ V ↦ ⟨((1st𝑓) ↾ dom dom ), (𝑥 ∈ dom ↦ (((2nd𝑓)‘𝑥) ↾ (𝑥)))⟩))
3 simprl 770 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → 𝑓 = 𝐹)
43fveq2d 6834 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → (1st𝑓) = (1st𝐹))
5 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → = 𝐻)
65dmeqd 5851 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → dom = dom 𝐻)
76dmeqd 5851 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → dom dom = dom dom 𝐻)
84, 7reseq12d 5935 . . 3 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → ((1st𝑓) ↾ dom dom ) = ((1st𝐹) ↾ dom dom 𝐻))
93fveq2d 6834 . . . . . 6 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → (2nd𝑓) = (2nd𝐹))
109fveq1d 6832 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → ((2nd𝑓)‘𝑥) = ((2nd𝐹)‘𝑥))
115fveq1d 6832 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → (𝑥) = (𝐻𝑥))
1210, 11reseq12d 5935 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → (((2nd𝑓)‘𝑥) ↾ (𝑥)) = (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥)))
136, 12mpteq12dv 5182 . . 3 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → (𝑥 ∈ dom ↦ (((2nd𝑓)‘𝑥) ↾ (𝑥))) = (𝑥 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥))))
148, 13opeq12d 4834 . 2 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → ⟨((1st𝑓) ↾ dom dom ), (𝑥 ∈ dom ↦ (((2nd𝑓)‘𝑥) ↾ (𝑥)))⟩ = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑥 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥)))⟩)
15 resfval.c . . 3 (𝜑𝐹𝑉)
1615elexd 3461 . 2 (𝜑𝐹 ∈ V)
17 resfval.d . . 3 (𝜑𝐻𝑊)
1817elexd 3461 . 2 (𝜑𝐻 ∈ V)
19 opex 5409 . . 3 ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑥 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥)))⟩ ∈ V
2019a1i 11 . 2 (𝜑 → ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑥 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥)))⟩ ∈ V)
212, 14, 16, 18, 20ovmpod 7506 1 (𝜑 → (𝐹f 𝐻) = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑥 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cop 4583  cmpt 5176  dom cdm 5621  cres 5623  cfv 6488  (class class class)co 7354  cmpo 7356  1st c1st 7927  2nd c2nd 7928  f cresf 17768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-res 5633  df-iota 6444  df-fun 6490  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359  df-resf 17772
This theorem is referenced by:  resfval2  17804  resf1st  17805  resf2nd  17806  funcres  17807
  Copyright terms: Public domain W3C validator