MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfval Structured version   Visualization version   GIF version

Theorem resfval 17214
Description: Value of the functor restriction operator. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resfval.c (𝜑𝐹𝑉)
resfval.d (𝜑𝐻𝑊)
Assertion
Ref Expression
resfval (𝜑 → (𝐹f 𝐻) = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑥 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥)))⟩)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐻   𝜑,𝑥
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem resfval
Dummy variables 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-resf 17183 . . 3 f = (𝑓 ∈ V, ∈ V ↦ ⟨((1st𝑓) ↾ dom dom ), (𝑥 ∈ dom ↦ (((2nd𝑓)‘𝑥) ↾ (𝑥)))⟩)
21a1i 11 . 2 (𝜑 → ↾f = (𝑓 ∈ V, ∈ V ↦ ⟨((1st𝑓) ↾ dom dom ), (𝑥 ∈ dom ↦ (((2nd𝑓)‘𝑥) ↾ (𝑥)))⟩))
3 simprl 771 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → 𝑓 = 𝐹)
43fveq2d 6663 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → (1st𝑓) = (1st𝐹))
5 simprr 773 . . . . . 6 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → = 𝐻)
65dmeqd 5746 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → dom = dom 𝐻)
76dmeqd 5746 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → dom dom = dom dom 𝐻)
84, 7reseq12d 5825 . . 3 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → ((1st𝑓) ↾ dom dom ) = ((1st𝐹) ↾ dom dom 𝐻))
93fveq2d 6663 . . . . . 6 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → (2nd𝑓) = (2nd𝐹))
109fveq1d 6661 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → ((2nd𝑓)‘𝑥) = ((2nd𝐹)‘𝑥))
115fveq1d 6661 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → (𝑥) = (𝐻𝑥))
1210, 11reseq12d 5825 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → (((2nd𝑓)‘𝑥) ↾ (𝑥)) = (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥)))
136, 12mpteq12dv 5118 . . 3 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → (𝑥 ∈ dom ↦ (((2nd𝑓)‘𝑥) ↾ (𝑥))) = (𝑥 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥))))
148, 13opeq12d 4772 . 2 ((𝜑 ∧ (𝑓 = 𝐹 = 𝐻)) → ⟨((1st𝑓) ↾ dom dom ), (𝑥 ∈ dom ↦ (((2nd𝑓)‘𝑥) ↾ (𝑥)))⟩ = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑥 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥)))⟩)
15 resfval.c . . 3 (𝜑𝐹𝑉)
1615elexd 3431 . 2 (𝜑𝐹 ∈ V)
17 resfval.d . . 3 (𝜑𝐻𝑊)
1817elexd 3431 . 2 (𝜑𝐻 ∈ V)
19 opex 5325 . . 3 ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑥 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥)))⟩ ∈ V
2019a1i 11 . 2 (𝜑 → ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑥 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥)))⟩ ∈ V)
212, 14, 16, 18, 20ovmpod 7298 1 (𝜑 → (𝐹f 𝐻) = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑥 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑥) ↾ (𝐻𝑥)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  Vcvv 3410  cop 4529  cmpt 5113  dom cdm 5525  cres 5527  cfv 6336  (class class class)co 7151  cmpo 7153  1st c1st 7692  2nd c2nd 7693  f cresf 17179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pr 5299
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-res 5537  df-iota 6295  df-fun 6338  df-fv 6344  df-ov 7154  df-oprab 7155  df-mpo 7156  df-resf 17183
This theorem is referenced by:  resfval2  17215  resf1st  17216  resf2nd  17217  funcres  17218
  Copyright terms: Public domain W3C validator