| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relfunc | Structured version Visualization version GIF version | ||
| Description: The set of functors is a relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| relfunc | ⊢ Rel (𝐷 Func 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-func 17820 | . 2 ⊢ Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) | |
| 2 | 1 | relmpoopab 8073 | 1 ⊢ Rel (𝐷 Func 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 [wsbc 3753 〈cop 4595 × cxp 5636 Rel wrel 5643 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 2nd c2nd 7967 ↑m cmap 8799 Xcixp 8870 Basecbs 17179 Hom chom 17231 compcco 17232 Catccat 17625 Idccid 17626 Func cfunc 17816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-func 17820 |
| This theorem is referenced by: cofuval 17844 cofu1 17846 cofu2 17848 cofuval2 17849 cofucl 17850 cofuass 17851 cofulid 17852 cofurid 17853 funcres 17858 funcres2 17860 wunfunc 17863 funcpropd 17864 relfull 17872 relfth 17873 isfull 17874 isfth 17878 idffth 17897 cofull 17898 cofth 17899 ressffth 17902 isnat 17912 isnat2 17913 nat1st2nd 17916 fuccocl 17929 fucidcl 17930 fuclid 17931 fucrid 17932 fucass 17933 fucsect 17937 fucinv 17938 invfuc 17939 fuciso 17940 natpropd 17941 fucpropd 17942 catciso 18073 prfval 18160 prfcl 18164 prf1st 18165 prf2nd 18166 1st2ndprf 18167 evlfcllem 18182 evlfcl 18183 curf1cl 18189 curf2cl 18192 curfcl 18193 uncf1 18197 uncf2 18198 curfuncf 18199 uncfcurf 18200 diag1cl 18203 diag2cl 18207 curf2ndf 18208 yon1cl 18224 oyon1cl 18232 yonedalem1 18233 yonedalem21 18234 yonedalem3a 18235 yonedalem4c 18238 yonedalem22 18239 yonedalem3b 18240 yonedalem3 18241 yonedainv 18242 yonffthlem 18243 yoniso 18246 func1st2nd 49065 func1st 49066 func2nd 49067 0funcg 49074 0funcALT 49077 cofu1st2nd 49081 idfurcl 49087 oppfval 49125 oppfval2 49126 oppfoppc2 49131 funcoppc4 49133 funcoppc5 49134 oppff1 49137 oppff1o 49138 imassc 49142 imaid 49143 imaf1co 49144 imasubc3 49145 idfth 49147 upfval3 49167 up1st2nd 49174 up1st2ndr 49175 uptrlem2 49200 uptra 49204 uobeqw 49208 uobeq 49209 uptr2a 49211 natoppfb 49220 diag1 49293 fuco112 49318 fuco111 49319 fuco21 49325 fuco11bALT 49327 fuco22nat 49335 fucof21 49336 fucoid 49337 fucoid2 49338 fuco22a 49339 fucocolem4 49345 precofvalALT 49357 precofval3 49360 reldmprcof1 49370 prcoftposcurfuco 49372 prcoftposcurfucoa 49373 prcofdiag1 49382 prcofdiag 49383 oppfdiag1 49403 oppfdiag 49405 functhincfun 49438 functermc2 49498 eufunclem 49510 termcfuncval 49521 diagffth 49527 reldmlmd2 49642 reldmcmd2 49643 lmddu 49656 cmddu 49657 lmdran 49660 cmdlan 49661 |
| Copyright terms: Public domain | W3C validator |