| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relfunc | Structured version Visualization version GIF version | ||
| Description: The set of functors is a relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| relfunc | ⊢ Rel (𝐷 Func 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-func 17871 | . 2 ⊢ Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) | |
| 2 | 1 | relmpoopab 8093 | 1 ⊢ Rel (𝐷 Func 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 [wsbc 3765 〈cop 4607 × cxp 5652 Rel wrel 5659 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 1st c1st 7986 2nd c2nd 7987 ↑m cmap 8840 Xcixp 8911 Basecbs 17228 Hom chom 17282 compcco 17283 Catccat 17676 Idccid 17677 Func cfunc 17867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-func 17871 |
| This theorem is referenced by: cofuval 17895 cofu1 17897 cofu2 17899 cofuval2 17900 cofucl 17901 cofuass 17902 cofulid 17903 cofurid 17904 funcres 17909 funcres2 17911 wunfunc 17914 funcpropd 17915 relfull 17923 relfth 17924 isfull 17925 isfth 17929 idffth 17948 cofull 17949 cofth 17950 ressffth 17953 isnat 17963 isnat2 17964 nat1st2nd 17967 fuccocl 17980 fucidcl 17981 fuclid 17982 fucrid 17983 fucass 17984 fucsect 17988 fucinv 17989 invfuc 17990 fuciso 17991 natpropd 17992 fucpropd 17993 catciso 18124 prfval 18211 prfcl 18215 prf1st 18216 prf2nd 18217 1st2ndprf 18218 evlfcllem 18233 evlfcl 18234 curf1cl 18240 curf2cl 18243 curfcl 18244 uncf1 18248 uncf2 18249 curfuncf 18250 uncfcurf 18251 diag1cl 18254 diag2cl 18258 curf2ndf 18259 yon1cl 18275 oyon1cl 18283 yonedalem1 18284 yonedalem21 18285 yonedalem3a 18286 yonedalem4c 18289 yonedalem22 18290 yonedalem3b 18291 yonedalem3 18292 yonedainv 18293 yonffthlem 18294 yoniso 18297 func1st2nd 49043 0funcg 49050 0funcALT 49053 idfurcl 49058 oppfval 49082 oppfval2 49083 oppfoppc2 49085 funcoppc4 49087 funcoppc5 49088 2oppffunc 49089 imassc 49093 imaid 49094 imaf1co 49095 imasubc3 49096 idfth 49098 upfval3 49113 up1st2nd 49119 up1st2ndr 49120 diag1 49215 fuco112 49240 fuco111 49241 fuco21 49247 fuco11bALT 49249 fuco22nat 49257 fucof21 49258 fucoid 49259 fucoid2 49260 fuco22a 49261 fucocolem4 49267 precofvalALT 49279 precofval3 49282 reldmprcof1 49291 prcoftposcurfuco 49293 prcoftposcurfucoa 49294 functhincfun 49335 functermc2 49394 eufunclem 49406 termcfuncval 49417 diagffth 49423 reldmlmd2 49525 reldmcmd2 49526 |
| Copyright terms: Public domain | W3C validator |