| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relfunc | Structured version Visualization version GIF version | ||
| Description: The set of functors is a relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| relfunc | ⊢ Rel (𝐷 Func 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-func 17827 | . 2 ⊢ Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) | |
| 2 | 1 | relmpoopab 8076 | 1 ⊢ Rel (𝐷 Func 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 [wsbc 3756 〈cop 4598 × cxp 5639 Rel wrel 5646 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 ↑m cmap 8802 Xcixp 8873 Basecbs 17186 Hom chom 17238 compcco 17239 Catccat 17632 Idccid 17633 Func cfunc 17823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-func 17827 |
| This theorem is referenced by: cofuval 17851 cofu1 17853 cofu2 17855 cofuval2 17856 cofucl 17857 cofuass 17858 cofulid 17859 cofurid 17860 funcres 17865 funcres2 17867 wunfunc 17870 funcpropd 17871 relfull 17879 relfth 17880 isfull 17881 isfth 17885 idffth 17904 cofull 17905 cofth 17906 ressffth 17909 isnat 17919 isnat2 17920 nat1st2nd 17923 fuccocl 17936 fucidcl 17937 fuclid 17938 fucrid 17939 fucass 17940 fucsect 17944 fucinv 17945 invfuc 17946 fuciso 17947 natpropd 17948 fucpropd 17949 catciso 18080 prfval 18167 prfcl 18171 prf1st 18172 prf2nd 18173 1st2ndprf 18174 evlfcllem 18189 evlfcl 18190 curf1cl 18196 curf2cl 18199 curfcl 18200 uncf1 18204 uncf2 18205 curfuncf 18206 uncfcurf 18207 diag1cl 18210 diag2cl 18214 curf2ndf 18215 yon1cl 18231 oyon1cl 18239 yonedalem1 18240 yonedalem21 18241 yonedalem3a 18242 yonedalem4c 18245 yonedalem22 18246 yonedalem3b 18247 yonedalem3 18248 yonedainv 18249 yonffthlem 18250 yoniso 18253 func1st2nd 49069 func1st 49070 func2nd 49071 0funcg 49078 0funcALT 49081 cofu1st2nd 49085 idfurcl 49091 oppfval 49129 oppfval2 49130 oppfoppc2 49135 funcoppc4 49137 funcoppc5 49138 oppff1 49141 oppff1o 49142 imassc 49146 imaid 49147 imaf1co 49148 imasubc3 49149 idfth 49151 upfval3 49171 up1st2nd 49178 up1st2ndr 49179 uptrlem2 49204 uptra 49208 uobeqw 49212 uobeq 49213 uptr2a 49215 natoppfb 49224 diag1 49297 fuco112 49322 fuco111 49323 fuco21 49329 fuco11bALT 49331 fuco22nat 49339 fucof21 49340 fucoid 49341 fucoid2 49342 fuco22a 49343 fucocolem4 49349 precofvalALT 49361 precofval3 49364 reldmprcof1 49374 prcoftposcurfuco 49376 prcoftposcurfucoa 49377 prcofdiag1 49386 prcofdiag 49387 oppfdiag1 49407 oppfdiag 49409 functhincfun 49442 functermc2 49502 eufunclem 49514 termcfuncval 49525 diagffth 49531 reldmlmd2 49646 reldmcmd2 49647 lmddu 49660 cmddu 49661 lmdran 49664 cmdlan 49665 |
| Copyright terms: Public domain | W3C validator |