| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relfunc | Structured version Visualization version GIF version | ||
| Description: The set of functors is a relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| relfunc | ⊢ Rel (𝐷 Func 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-func 17783 | . 2 ⊢ Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) | |
| 2 | 1 | relmpoopab 8034 | 1 ⊢ Rel (𝐷 Func 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 [wsbc 3744 〈cop 4585 × cxp 5621 Rel wrel 5628 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 2nd c2nd 7930 ↑m cmap 8760 Xcixp 8831 Basecbs 17138 Hom chom 17190 compcco 17191 Catccat 17588 Idccid 17589 Func cfunc 17779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-func 17783 |
| This theorem is referenced by: cofuval 17807 cofu1 17809 cofu2 17811 cofuval2 17812 cofucl 17813 cofuass 17814 cofulid 17815 cofurid 17816 funcres 17821 funcres2 17823 wunfunc 17826 funcpropd 17827 relfull 17835 relfth 17836 isfull 17837 isfth 17841 idffth 17860 cofull 17861 cofth 17862 ressffth 17865 isnat 17875 isnat2 17876 nat1st2nd 17879 fuccocl 17892 fucidcl 17893 fuclid 17894 fucrid 17895 fucass 17896 fucsect 17900 fucinv 17901 invfuc 17902 fuciso 17903 natpropd 17904 fucpropd 17905 catciso 18036 prfval 18123 prfcl 18127 prf1st 18128 prf2nd 18129 1st2ndprf 18130 evlfcllem 18145 evlfcl 18146 curf1cl 18152 curf2cl 18155 curfcl 18156 uncf1 18160 uncf2 18161 curfuncf 18162 uncfcurf 18163 diag1cl 18166 diag2cl 18170 curf2ndf 18171 yon1cl 18187 oyon1cl 18195 yonedalem1 18196 yonedalem21 18197 yonedalem3a 18198 yonedalem4c 18201 yonedalem22 18202 yonedalem3b 18203 yonedalem3 18204 yonedainv 18205 yonffthlem 18206 yoniso 18209 func1st2nd 49062 func1st 49063 func2nd 49064 0funcg 49071 0funcALT 49074 cofu1st2nd 49078 idfurcl 49084 oppfval 49122 oppfval2 49123 oppfoppc2 49128 funcoppc4 49130 funcoppc5 49131 oppff1 49134 oppff1o 49135 imassc 49139 imaid 49140 imaf1co 49141 imasubc3 49142 idfth 49144 upfval3 49164 up1st2nd 49171 up1st2ndr 49172 uptrlem2 49197 uptra 49201 uobeqw 49205 uobeq 49206 uptr2a 49208 natoppfb 49217 diag1 49290 fuco112 49315 fuco111 49316 fuco21 49322 fuco11bALT 49324 fuco22nat 49332 fucof21 49333 fucoid 49334 fucoid2 49335 fuco22a 49336 fucocolem4 49342 precofvalALT 49354 precofval3 49357 reldmprcof1 49367 prcoftposcurfuco 49369 prcoftposcurfucoa 49370 prcofdiag1 49379 prcofdiag 49380 oppfdiag1 49400 oppfdiag 49402 functhincfun 49435 functermc2 49495 eufunclem 49507 termcfuncval 49518 diagffth 49524 reldmlmd2 49639 reldmcmd2 49640 lmddu 49653 cmddu 49654 lmdran 49657 cmdlan 49658 |
| Copyright terms: Public domain | W3C validator |