![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relfunc | Structured version Visualization version GIF version |
Description: The set of functors is a relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
relfunc | ⊢ Rel (𝐷 Func 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-func 17922 | . 2 ⊢ Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) | |
2 | 1 | relmpoopab 8135 | 1 ⊢ Rel (𝐷 Func 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 [wsbc 3804 〈cop 4654 × cxp 5698 Rel wrel 5705 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 1st c1st 8028 2nd c2nd 8029 ↑m cmap 8884 Xcixp 8955 Basecbs 17258 Hom chom 17322 compcco 17323 Catccat 17722 Idccid 17723 Func cfunc 17918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-func 17922 |
This theorem is referenced by: cofuval 17946 cofu1 17948 cofu2 17950 cofuval2 17951 cofucl 17952 cofuass 17953 cofulid 17954 cofurid 17955 funcres 17960 funcres2 17962 wunfunc 17965 wunfuncOLD 17966 funcpropd 17967 relfull 17975 relfth 17976 isfull 17977 isfth 17981 idffth 18000 cofull 18001 cofth 18002 ressffth 18005 isnat 18015 isnat2 18016 nat1st2nd 18019 fuccocl 18034 fucidcl 18035 fuclid 18036 fucrid 18037 fucass 18038 fucsect 18042 fucinv 18043 invfuc 18044 fuciso 18045 natpropd 18046 fucpropd 18047 catciso 18178 prfval 18268 prfcl 18272 prf1st 18273 prf2nd 18274 1st2ndprf 18275 evlfcllem 18291 evlfcl 18292 curf1cl 18298 curf2cl 18301 curfcl 18302 uncf1 18306 uncf2 18307 curfuncf 18308 uncfcurf 18309 diag1cl 18312 diag2cl 18316 curf2ndf 18317 yon1cl 18333 oyon1cl 18341 yonedalem1 18342 yonedalem21 18343 yonedalem3a 18344 yonedalem4c 18347 yonedalem22 18348 yonedalem3b 18349 yonedalem3 18350 yonedainv 18351 yonffthlem 18352 yoniso 18355 |
Copyright terms: Public domain | W3C validator |