| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relfunc | Structured version Visualization version GIF version | ||
| Description: The set of functors is a relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| relfunc | ⊢ Rel (𝐷 Func 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-func 17762 | . 2 ⊢ Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) | |
| 2 | 1 | relmpoopab 8024 | 1 ⊢ Rel (𝐷 Func 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 [wsbc 3741 〈cop 4582 × cxp 5614 Rel wrel 5621 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 ↑m cmap 8750 Xcixp 8821 Basecbs 17117 Hom chom 17169 compcco 17170 Catccat 17567 Idccid 17568 Func cfunc 17758 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-func 17762 |
| This theorem is referenced by: cofuval 17786 cofu1 17788 cofu2 17790 cofuval2 17791 cofucl 17792 cofuass 17793 cofulid 17794 cofurid 17795 funcres 17800 funcres2 17802 wunfunc 17805 funcpropd 17806 relfull 17814 relfth 17815 isfull 17816 isfth 17820 idffth 17839 cofull 17840 cofth 17841 ressffth 17844 isnat 17854 isnat2 17855 nat1st2nd 17858 fuccocl 17871 fucidcl 17872 fuclid 17873 fucrid 17874 fucass 17875 fucsect 17879 fucinv 17880 invfuc 17881 fuciso 17882 natpropd 17883 fucpropd 17884 catciso 18015 prfval 18102 prfcl 18106 prf1st 18107 prf2nd 18108 1st2ndprf 18109 evlfcllem 18124 evlfcl 18125 curf1cl 18131 curf2cl 18134 curfcl 18135 uncf1 18139 uncf2 18140 curfuncf 18141 uncfcurf 18142 diag1cl 18145 diag2cl 18149 curf2ndf 18150 yon1cl 18166 oyon1cl 18174 yonedalem1 18175 yonedalem21 18176 yonedalem3a 18177 yonedalem4c 18180 yonedalem22 18181 yonedalem3b 18182 yonedalem3 18183 yonedainv 18184 yonffthlem 18185 yoniso 18188 func1st2nd 49107 func1st 49108 func2nd 49109 0funcg 49116 0funcALT 49119 cofu1st2nd 49123 idfurcl 49129 oppfval 49167 oppfval2 49168 oppfoppc2 49173 funcoppc4 49175 funcoppc5 49176 oppff1 49179 oppff1o 49180 imassc 49184 imaid 49185 imaf1co 49186 imasubc3 49187 idfth 49189 upfval3 49209 up1st2nd 49216 up1st2ndr 49217 uptrlem2 49242 uptra 49246 uobeqw 49250 uobeq 49251 uptr2a 49253 natoppfb 49262 diag1 49335 fuco112 49360 fuco111 49361 fuco21 49367 fuco11bALT 49369 fuco22nat 49377 fucof21 49378 fucoid 49379 fucoid2 49380 fuco22a 49381 fucocolem4 49387 precofvalALT 49399 precofval3 49402 reldmprcof1 49412 prcoftposcurfuco 49414 prcoftposcurfucoa 49415 prcofdiag1 49424 prcofdiag 49425 oppfdiag1 49445 oppfdiag 49447 functhincfun 49480 functermc2 49540 eufunclem 49552 termcfuncval 49563 diagffth 49569 reldmlmd2 49684 reldmcmd2 49685 lmddu 49698 cmddu 49699 lmdran 49702 cmdlan 49703 |
| Copyright terms: Public domain | W3C validator |