| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relfunc | Structured version Visualization version GIF version | ||
| Description: The set of functors is a relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| relfunc | ⊢ Rel (𝐷 Func 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-func 17767 | . 2 ⊢ Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) | |
| 2 | 1 | relmpoopab 8030 | 1 ⊢ Rel (𝐷 Func 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 [wsbc 3737 〈cop 4581 × cxp 5617 Rel wrel 5624 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 1st c1st 7925 2nd c2nd 7926 ↑m cmap 8756 Xcixp 8827 Basecbs 17122 Hom chom 17174 compcco 17175 Catccat 17572 Idccid 17573 Func cfunc 17763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-func 17767 |
| This theorem is referenced by: cofuval 17791 cofu1 17793 cofu2 17795 cofuval2 17796 cofucl 17797 cofuass 17798 cofulid 17799 cofurid 17800 funcres 17805 funcres2 17807 wunfunc 17810 funcpropd 17811 relfull 17819 relfth 17820 isfull 17821 isfth 17825 idffth 17844 cofull 17845 cofth 17846 ressffth 17849 isnat 17859 isnat2 17860 nat1st2nd 17863 fuccocl 17876 fucidcl 17877 fuclid 17878 fucrid 17879 fucass 17880 fucsect 17884 fucinv 17885 invfuc 17886 fuciso 17887 natpropd 17888 fucpropd 17889 catciso 18020 prfval 18107 prfcl 18111 prf1st 18112 prf2nd 18113 1st2ndprf 18114 evlfcllem 18129 evlfcl 18130 curf1cl 18136 curf2cl 18139 curfcl 18140 uncf1 18144 uncf2 18145 curfuncf 18146 uncfcurf 18147 diag1cl 18150 diag2cl 18154 curf2ndf 18155 yon1cl 18171 oyon1cl 18179 yonedalem1 18180 yonedalem21 18181 yonedalem3a 18182 yonedalem4c 18185 yonedalem22 18186 yonedalem3b 18187 yonedalem3 18188 yonedainv 18189 yonffthlem 18190 yoniso 18193 func1st2nd 49201 func1st 49202 func2nd 49203 0funcg 49210 0funcALT 49213 cofu1st2nd 49217 idfurcl 49223 oppfval 49261 oppfval2 49262 oppfoppc2 49267 funcoppc4 49269 funcoppc5 49270 oppff1 49273 oppff1o 49274 imassc 49278 imaid 49279 imaf1co 49280 imasubc3 49281 idfth 49283 upfval3 49303 up1st2nd 49310 up1st2ndr 49311 uptrlem2 49336 uptra 49340 uobeqw 49344 uobeq 49345 uptr2a 49347 natoppfb 49356 diag1 49429 fuco112 49454 fuco111 49455 fuco21 49461 fuco11bALT 49463 fuco22nat 49471 fucof21 49472 fucoid 49473 fucoid2 49474 fuco22a 49475 fucocolem4 49481 precofvalALT 49493 precofval3 49496 reldmprcof1 49506 prcoftposcurfuco 49508 prcoftposcurfucoa 49509 prcofdiag1 49518 prcofdiag 49519 oppfdiag1 49539 oppfdiag 49541 functhincfun 49574 functermc2 49634 eufunclem 49646 termcfuncval 49657 diagffth 49663 reldmlmd2 49778 reldmcmd2 49779 lmddu 49792 cmddu 49793 lmdran 49796 cmdlan 49797 |
| Copyright terms: Public domain | W3C validator |