Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relfunc | Structured version Visualization version GIF version |
Description: The set of functors is a relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
relfunc | ⊢ Rel (𝐷 Func 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-func 17670 | . 2 ⊢ Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) | |
2 | 1 | relmpoopab 8006 | 1 ⊢ Rel (𝐷 Func 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3062 [wsbc 3730 〈cop 4583 × cxp 5622 Rel wrel 5629 ⟶wf 6479 ‘cfv 6483 (class class class)co 7341 1st c1st 7901 2nd c2nd 7902 ↑m cmap 8690 Xcixp 8760 Basecbs 17009 Hom chom 17070 compcco 17071 Catccat 17470 Idccid 17471 Func cfunc 17666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pr 5376 ax-un 7654 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-iota 6435 df-fun 6485 df-fv 6491 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7903 df-2nd 7904 df-func 17670 |
This theorem is referenced by: cofuval 17694 cofu1 17696 cofu2 17698 cofuval2 17699 cofucl 17700 cofuass 17701 cofulid 17702 cofurid 17703 funcres 17708 funcres2 17710 wunfunc 17711 wunfuncOLD 17712 funcpropd 17713 relfull 17721 relfth 17722 isfull 17723 isfth 17727 idffth 17746 cofull 17747 cofth 17748 ressffth 17751 isnat 17760 isnat2 17761 nat1st2nd 17764 fuccocl 17779 fucidcl 17780 fuclid 17781 fucrid 17782 fucass 17783 fucsect 17787 fucinv 17788 invfuc 17789 fuciso 17790 natpropd 17791 fucpropd 17792 catciso 17923 prfval 18013 prfcl 18017 prf1st 18018 prf2nd 18019 1st2ndprf 18020 evlfcllem 18036 evlfcl 18037 curf1cl 18043 curf2cl 18046 curfcl 18047 uncf1 18051 uncf2 18052 curfuncf 18053 uncfcurf 18054 diag1cl 18057 diag2cl 18061 curf2ndf 18062 yon1cl 18078 oyon1cl 18086 yonedalem1 18087 yonedalem21 18088 yonedalem3a 18089 yonedalem4c 18092 yonedalem22 18093 yonedalem3b 18094 yonedalem3 18095 yonedainv 18096 yonffthlem 18097 yoniso 18100 |
Copyright terms: Public domain | W3C validator |