![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relfunc | Structured version Visualization version GIF version |
Description: The set of functors is a relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
relfunc | ⊢ Rel (𝐷 Func 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-func 17812 | . 2 ⊢ Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(⟨(𝑓‘𝑥), (𝑓‘𝑦)⟩(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) | |
2 | 1 | relmpoopab 8082 | 1 ⊢ Rel (𝐷 Func 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ∀wral 3059 [wsbc 3776 ⟨cop 4633 × cxp 5673 Rel wrel 5680 ⟶wf 6538 ‘cfv 6542 (class class class)co 7411 1st c1st 7975 2nd c2nd 7976 ↑m cmap 8822 Xcixp 8893 Basecbs 17148 Hom chom 17212 compcco 17213 Catccat 17612 Idccid 17613 Func cfunc 17808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-func 17812 |
This theorem is referenced by: cofuval 17836 cofu1 17838 cofu2 17840 cofuval2 17841 cofucl 17842 cofuass 17843 cofulid 17844 cofurid 17845 funcres 17850 funcres2 17852 wunfunc 17853 wunfuncOLD 17854 funcpropd 17855 relfull 17863 relfth 17864 isfull 17865 isfth 17869 idffth 17888 cofull 17889 cofth 17890 ressffth 17893 isnat 17902 isnat2 17903 nat1st2nd 17906 fuccocl 17921 fucidcl 17922 fuclid 17923 fucrid 17924 fucass 17925 fucsect 17929 fucinv 17930 invfuc 17931 fuciso 17932 natpropd 17933 fucpropd 17934 catciso 18065 prfval 18155 prfcl 18159 prf1st 18160 prf2nd 18161 1st2ndprf 18162 evlfcllem 18178 evlfcl 18179 curf1cl 18185 curf2cl 18188 curfcl 18189 uncf1 18193 uncf2 18194 curfuncf 18195 uncfcurf 18196 diag1cl 18199 diag2cl 18203 curf2ndf 18204 yon1cl 18220 oyon1cl 18228 yonedalem1 18229 yonedalem21 18230 yonedalem3a 18231 yonedalem4c 18234 yonedalem22 18235 yonedalem3b 18236 yonedalem3 18237 yonedainv 18238 yonffthlem 18239 yoniso 18242 |
Copyright terms: Public domain | W3C validator |