Detailed syntax breakdown of Definition df-rgspn
| Step | Hyp | Ref
| Expression |
| 1 | | crgspn 20602 |
. 2
class
RingSpan |
| 2 | | vw |
. . 3
setvar 𝑤 |
| 3 | | cvv 3479 |
. . 3
class
V |
| 4 | | vs |
. . . 4
setvar 𝑠 |
| 5 | 2 | cv 1539 |
. . . . . 6
class 𝑤 |
| 6 | | cbs 17243 |
. . . . . 6
class
Base |
| 7 | 5, 6 | cfv 6559 |
. . . . 5
class
(Base‘𝑤) |
| 8 | 7 | cpw 4598 |
. . . 4
class 𝒫
(Base‘𝑤) |
| 9 | 4 | cv 1539 |
. . . . . . 7
class 𝑠 |
| 10 | | vt |
. . . . . . . 8
setvar 𝑡 |
| 11 | 10 | cv 1539 |
. . . . . . 7
class 𝑡 |
| 12 | 9, 11 | wss 3950 |
. . . . . 6
wff 𝑠 ⊆ 𝑡 |
| 13 | | csubrg 20561 |
. . . . . . 7
class
SubRing |
| 14 | 5, 13 | cfv 6559 |
. . . . . 6
class
(SubRing‘𝑤) |
| 15 | 12, 10, 14 | crab 3435 |
. . . . 5
class {𝑡 ∈ (SubRing‘𝑤) ∣ 𝑠 ⊆ 𝑡} |
| 16 | 15 | cint 4944 |
. . . 4
class ∩ {𝑡
∈ (SubRing‘𝑤)
∣ 𝑠 ⊆ 𝑡} |
| 17 | 4, 8, 16 | cmpt 5223 |
. . 3
class (𝑠 ∈ 𝒫
(Base‘𝑤) ↦
∩ {𝑡 ∈ (SubRing‘𝑤) ∣ 𝑠 ⊆ 𝑡}) |
| 18 | 2, 3, 17 | cmpt 5223 |
. 2
class (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫
(Base‘𝑤) ↦
∩ {𝑡 ∈ (SubRing‘𝑤) ∣ 𝑠 ⊆ 𝑡})) |
| 19 | 1, 18 | wceq 1540 |
1
wff RingSpan =
(𝑤 ∈ V ↦ (𝑠 ∈ 𝒫
(Base‘𝑤) ↦
∩ {𝑡 ∈ (SubRing‘𝑤) ∣ 𝑠 ⊆ 𝑡})) |