Detailed syntax breakdown of Definition df-rgspn
Step | Hyp | Ref
| Expression |
1 | | crgspn 20021 |
. 2
class
RingSpan |
2 | | vw |
. . 3
setvar 𝑤 |
3 | | cvv 3432 |
. . 3
class
V |
4 | | vs |
. . . 4
setvar 𝑠 |
5 | 2 | cv 1538 |
. . . . . 6
class 𝑤 |
6 | | cbs 16912 |
. . . . . 6
class
Base |
7 | 5, 6 | cfv 6433 |
. . . . 5
class
(Base‘𝑤) |
8 | 7 | cpw 4533 |
. . . 4
class 𝒫
(Base‘𝑤) |
9 | 4 | cv 1538 |
. . . . . . 7
class 𝑠 |
10 | | vt |
. . . . . . . 8
setvar 𝑡 |
11 | 10 | cv 1538 |
. . . . . . 7
class 𝑡 |
12 | 9, 11 | wss 3887 |
. . . . . 6
wff 𝑠 ⊆ 𝑡 |
13 | | csubrg 20020 |
. . . . . . 7
class
SubRing |
14 | 5, 13 | cfv 6433 |
. . . . . 6
class
(SubRing‘𝑤) |
15 | 12, 10, 14 | crab 3068 |
. . . . 5
class {𝑡 ∈ (SubRing‘𝑤) ∣ 𝑠 ⊆ 𝑡} |
16 | 15 | cint 4879 |
. . . 4
class ∩ {𝑡
∈ (SubRing‘𝑤)
∣ 𝑠 ⊆ 𝑡} |
17 | 4, 8, 16 | cmpt 5157 |
. . 3
class (𝑠 ∈ 𝒫
(Base‘𝑤) ↦
∩ {𝑡 ∈ (SubRing‘𝑤) ∣ 𝑠 ⊆ 𝑡}) |
18 | 2, 3, 17 | cmpt 5157 |
. 2
class (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫
(Base‘𝑤) ↦
∩ {𝑡 ∈ (SubRing‘𝑤) ∣ 𝑠 ⊆ 𝑡})) |
19 | 1, 18 | wceq 1539 |
1
wff RingSpan =
(𝑤 ∈ V ↦ (𝑠 ∈ 𝒫
(Base‘𝑤) ↦
∩ {𝑡 ∈ (SubRing‘𝑤) ∣ 𝑠 ⊆ 𝑡})) |