Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rgspnval Structured version   Visualization version   GIF version

Theorem rgspnval 40909
Description: Value of the ring-span of a set of elements in a ring. (Contributed by Stefan O'Rear, 7-Dec-2014.)
Hypotheses
Ref Expression
rgspnval.r (𝜑𝑅 ∈ Ring)
rgspnval.b (𝜑𝐵 = (Base‘𝑅))
rgspnval.ss (𝜑𝐴𝐵)
rgspnval.n (𝜑𝑁 = (RingSpan‘𝑅))
rgspnval.sp (𝜑𝑈 = (𝑁𝐴))
Assertion
Ref Expression
rgspnval (𝜑𝑈 = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
Distinct variable groups:   𝜑,𝑡   𝑡,𝑅   𝑡,𝐵   𝑡,𝐴
Allowed substitution hints:   𝑈(𝑡)   𝑁(𝑡)

Proof of Theorem rgspnval
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rgspnval.sp . 2 (𝜑𝑈 = (𝑁𝐴))
2 rgspnval.n . . 3 (𝜑𝑁 = (RingSpan‘𝑅))
32fveq1d 6758 . 2 (𝜑 → (𝑁𝐴) = ((RingSpan‘𝑅)‘𝐴))
4 rgspnval.r . . . . 5 (𝜑𝑅 ∈ Ring)
5 elex 3440 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ V)
6 fveq2 6756 . . . . . . . 8 (𝑎 = 𝑅 → (Base‘𝑎) = (Base‘𝑅))
76pweqd 4549 . . . . . . 7 (𝑎 = 𝑅 → 𝒫 (Base‘𝑎) = 𝒫 (Base‘𝑅))
8 fveq2 6756 . . . . . . . . 9 (𝑎 = 𝑅 → (SubRing‘𝑎) = (SubRing‘𝑅))
9 rabeq 3408 . . . . . . . . 9 ((SubRing‘𝑎) = (SubRing‘𝑅) → {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡})
108, 9syl 17 . . . . . . . 8 (𝑎 = 𝑅 → {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡})
1110inteqd 4881 . . . . . . 7 (𝑎 = 𝑅 {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡})
127, 11mpteq12dv 5161 . . . . . 6 (𝑎 = 𝑅 → (𝑏 ∈ 𝒫 (Base‘𝑎) ↦ {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏𝑡}) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡}))
13 df-rgspn 19938 . . . . . 6 RingSpan = (𝑎 ∈ V ↦ (𝑏 ∈ 𝒫 (Base‘𝑎) ↦ {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏𝑡}))
14 fvex 6769 . . . . . . . 8 (Base‘𝑅) ∈ V
1514pwex 5298 . . . . . . 7 𝒫 (Base‘𝑅) ∈ V
1615mptex 7081 . . . . . 6 (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡}) ∈ V
1712, 13, 16fvmpt 6857 . . . . 5 (𝑅 ∈ V → (RingSpan‘𝑅) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡}))
184, 5, 173syl 18 . . . 4 (𝜑 → (RingSpan‘𝑅) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡}))
1918fveq1d 6758 . . 3 (𝜑 → ((RingSpan‘𝑅)‘𝐴) = ((𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡})‘𝐴))
20 eqid 2738 . . . 4 (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡}) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡})
21 sseq1 3942 . . . . . 6 (𝑏 = 𝐴 → (𝑏𝑡𝐴𝑡))
2221rabbidv 3404 . . . . 5 (𝑏 = 𝐴 → {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
2322inteqd 4881 . . . 4 (𝑏 = 𝐴 {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
24 rgspnval.ss . . . . . 6 (𝜑𝐴𝐵)
25 rgspnval.b . . . . . 6 (𝜑𝐵 = (Base‘𝑅))
2624, 25sseqtrd 3957 . . . . 5 (𝜑𝐴 ⊆ (Base‘𝑅))
2714elpw2 5264 . . . . 5 (𝐴 ∈ 𝒫 (Base‘𝑅) ↔ 𝐴 ⊆ (Base‘𝑅))
2826, 27sylibr 233 . . . 4 (𝜑𝐴 ∈ 𝒫 (Base‘𝑅))
29 eqid 2738 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
3029subrgid 19941 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅))
314, 30syl 17 . . . . . . 7 (𝜑 → (Base‘𝑅) ∈ (SubRing‘𝑅))
3225, 31eqeltrd 2839 . . . . . 6 (𝜑𝐵 ∈ (SubRing‘𝑅))
33 sseq2 3943 . . . . . . 7 (𝑡 = 𝐵 → (𝐴𝑡𝐴𝐵))
3433rspcev 3552 . . . . . 6 ((𝐵 ∈ (SubRing‘𝑅) ∧ 𝐴𝐵) → ∃𝑡 ∈ (SubRing‘𝑅)𝐴𝑡)
3532, 24, 34syl2anc 583 . . . . 5 (𝜑 → ∃𝑡 ∈ (SubRing‘𝑅)𝐴𝑡)
36 intexrab 5259 . . . . 5 (∃𝑡 ∈ (SubRing‘𝑅)𝐴𝑡 {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡} ∈ V)
3735, 36sylib 217 . . . 4 (𝜑 {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡} ∈ V)
3820, 23, 28, 37fvmptd3 6880 . . 3 (𝜑 → ((𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡})‘𝐴) = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
3919, 38eqtrd 2778 . 2 (𝜑 → ((RingSpan‘𝑅)‘𝐴) = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
401, 3, 393eqtrd 2782 1 (𝜑𝑈 = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  𝒫 cpw 4530   cint 4876  cmpt 5153  cfv 6418  Basecbs 16840  Ringcrg 19698  SubRingcsubrg 19935  RingSpancrgspn 19936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-rgspn 19938
This theorem is referenced by:  rgspncl  40910  rgspnssid  40911  rgspnmin  40912
  Copyright terms: Public domain W3C validator