MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rgspnval Structured version   Visualization version   GIF version

Theorem rgspnval 20522
Description: Value of the ring-span of a set of elements in a ring. (Contributed by Stefan O'Rear, 7-Dec-2014.)
Hypotheses
Ref Expression
rgspnval.r (𝜑𝑅 ∈ Ring)
rgspnval.b (𝜑𝐵 = (Base‘𝑅))
rgspnval.ss (𝜑𝐴𝐵)
rgspnval.n (𝜑𝑁 = (RingSpan‘𝑅))
rgspnval.sp (𝜑𝑈 = (𝑁𝐴))
Assertion
Ref Expression
rgspnval (𝜑𝑈 = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
Distinct variable groups:   𝜑,𝑡   𝑡,𝑅   𝑡,𝐵   𝑡,𝐴
Allowed substitution hints:   𝑈(𝑡)   𝑁(𝑡)

Proof of Theorem rgspnval
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rgspnval.sp . 2 (𝜑𝑈 = (𝑁𝐴))
2 rgspnval.n . . 3 (𝜑𝑁 = (RingSpan‘𝑅))
32fveq1d 6819 . 2 (𝜑 → (𝑁𝐴) = ((RingSpan‘𝑅)‘𝐴))
4 rgspnval.r . . . . 5 (𝜑𝑅 ∈ Ring)
5 elex 3457 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ V)
6 fveq2 6817 . . . . . . . 8 (𝑎 = 𝑅 → (Base‘𝑎) = (Base‘𝑅))
76pweqd 4562 . . . . . . 7 (𝑎 = 𝑅 → 𝒫 (Base‘𝑎) = 𝒫 (Base‘𝑅))
8 fveq2 6817 . . . . . . . . 9 (𝑎 = 𝑅 → (SubRing‘𝑎) = (SubRing‘𝑅))
9 rabeq 3409 . . . . . . . . 9 ((SubRing‘𝑎) = (SubRing‘𝑅) → {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡})
108, 9syl 17 . . . . . . . 8 (𝑎 = 𝑅 → {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡})
1110inteqd 4897 . . . . . . 7 (𝑎 = 𝑅 {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡})
127, 11mpteq12dv 5173 . . . . . 6 (𝑎 = 𝑅 → (𝑏 ∈ 𝒫 (Base‘𝑎) ↦ {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏𝑡}) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡}))
13 df-rgspn 20521 . . . . . 6 RingSpan = (𝑎 ∈ V ↦ (𝑏 ∈ 𝒫 (Base‘𝑎) ↦ {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏𝑡}))
14 fvex 6830 . . . . . . . 8 (Base‘𝑅) ∈ V
1514pwex 5313 . . . . . . 7 𝒫 (Base‘𝑅) ∈ V
1615mptex 7152 . . . . . 6 (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡}) ∈ V
1712, 13, 16fvmpt 6924 . . . . 5 (𝑅 ∈ V → (RingSpan‘𝑅) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡}))
184, 5, 173syl 18 . . . 4 (𝜑 → (RingSpan‘𝑅) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡}))
1918fveq1d 6819 . . 3 (𝜑 → ((RingSpan‘𝑅)‘𝐴) = ((𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡})‘𝐴))
20 eqid 2731 . . . 4 (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡}) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡})
21 sseq1 3955 . . . . . 6 (𝑏 = 𝐴 → (𝑏𝑡𝐴𝑡))
2221rabbidv 3402 . . . . 5 (𝑏 = 𝐴 → {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
2322inteqd 4897 . . . 4 (𝑏 = 𝐴 {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
24 rgspnval.ss . . . . . 6 (𝜑𝐴𝐵)
25 rgspnval.b . . . . . 6 (𝜑𝐵 = (Base‘𝑅))
2624, 25sseqtrd 3966 . . . . 5 (𝜑𝐴 ⊆ (Base‘𝑅))
2714elpw2 5267 . . . . 5 (𝐴 ∈ 𝒫 (Base‘𝑅) ↔ 𝐴 ⊆ (Base‘𝑅))
2826, 27sylibr 234 . . . 4 (𝜑𝐴 ∈ 𝒫 (Base‘𝑅))
29 eqid 2731 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
3029subrgid 20483 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅))
314, 30syl 17 . . . . . . 7 (𝜑 → (Base‘𝑅) ∈ (SubRing‘𝑅))
3225, 31eqeltrd 2831 . . . . . 6 (𝜑𝐵 ∈ (SubRing‘𝑅))
33 sseq2 3956 . . . . . . 7 (𝑡 = 𝐵 → (𝐴𝑡𝐴𝐵))
3433rspcev 3572 . . . . . 6 ((𝐵 ∈ (SubRing‘𝑅) ∧ 𝐴𝐵) → ∃𝑡 ∈ (SubRing‘𝑅)𝐴𝑡)
3532, 24, 34syl2anc 584 . . . . 5 (𝜑 → ∃𝑡 ∈ (SubRing‘𝑅)𝐴𝑡)
36 intexrab 5280 . . . . 5 (∃𝑡 ∈ (SubRing‘𝑅)𝐴𝑡 {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡} ∈ V)
3735, 36sylib 218 . . . 4 (𝜑 {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡} ∈ V)
3820, 23, 28, 37fvmptd3 6947 . . 3 (𝜑 → ((𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡})‘𝐴) = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
3919, 38eqtrd 2766 . 2 (𝜑 → ((RingSpan‘𝑅)‘𝐴) = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
401, 3, 393eqtrd 2770 1 (𝜑𝑈 = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  𝒫 cpw 4545   cint 4892  cmpt 5167  cfv 6476  Basecbs 17115  Ringcrg 20146  SubRingcsubrg 20479  RingSpancrgspn 20520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mgp 20054  df-ur 20095  df-ring 20148  df-subrg 20480  df-rgspn 20521
This theorem is referenced by:  rgspncl  20523  rgspnssid  20524  rgspnmin  20525  elrgspnlem4  33204
  Copyright terms: Public domain W3C validator