MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rgspnval Structured version   Visualization version   GIF version

Theorem rgspnval 20497
Description: Value of the ring-span of a set of elements in a ring. (Contributed by Stefan O'Rear, 7-Dec-2014.)
Hypotheses
Ref Expression
rgspnval.r (𝜑𝑅 ∈ Ring)
rgspnval.b (𝜑𝐵 = (Base‘𝑅))
rgspnval.ss (𝜑𝐴𝐵)
rgspnval.n (𝜑𝑁 = (RingSpan‘𝑅))
rgspnval.sp (𝜑𝑈 = (𝑁𝐴))
Assertion
Ref Expression
rgspnval (𝜑𝑈 = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
Distinct variable groups:   𝜑,𝑡   𝑡,𝑅   𝑡,𝐵   𝑡,𝐴
Allowed substitution hints:   𝑈(𝑡)   𝑁(𝑡)

Proof of Theorem rgspnval
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rgspnval.sp . 2 (𝜑𝑈 = (𝑁𝐴))
2 rgspnval.n . . 3 (𝜑𝑁 = (RingSpan‘𝑅))
32fveq1d 6842 . 2 (𝜑 → (𝑁𝐴) = ((RingSpan‘𝑅)‘𝐴))
4 rgspnval.r . . . . 5 (𝜑𝑅 ∈ Ring)
5 elex 3465 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ V)
6 fveq2 6840 . . . . . . . 8 (𝑎 = 𝑅 → (Base‘𝑎) = (Base‘𝑅))
76pweqd 4576 . . . . . . 7 (𝑎 = 𝑅 → 𝒫 (Base‘𝑎) = 𝒫 (Base‘𝑅))
8 fveq2 6840 . . . . . . . . 9 (𝑎 = 𝑅 → (SubRing‘𝑎) = (SubRing‘𝑅))
9 rabeq 3417 . . . . . . . . 9 ((SubRing‘𝑎) = (SubRing‘𝑅) → {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡})
108, 9syl 17 . . . . . . . 8 (𝑎 = 𝑅 → {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡})
1110inteqd 4911 . . . . . . 7 (𝑎 = 𝑅 {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡})
127, 11mpteq12dv 5189 . . . . . 6 (𝑎 = 𝑅 → (𝑏 ∈ 𝒫 (Base‘𝑎) ↦ {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏𝑡}) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡}))
13 df-rgspn 20496 . . . . . 6 RingSpan = (𝑎 ∈ V ↦ (𝑏 ∈ 𝒫 (Base‘𝑎) ↦ {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏𝑡}))
14 fvex 6853 . . . . . . . 8 (Base‘𝑅) ∈ V
1514pwex 5330 . . . . . . 7 𝒫 (Base‘𝑅) ∈ V
1615mptex 7179 . . . . . 6 (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡}) ∈ V
1712, 13, 16fvmpt 6950 . . . . 5 (𝑅 ∈ V → (RingSpan‘𝑅) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡}))
184, 5, 173syl 18 . . . 4 (𝜑 → (RingSpan‘𝑅) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡}))
1918fveq1d 6842 . . 3 (𝜑 → ((RingSpan‘𝑅)‘𝐴) = ((𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡})‘𝐴))
20 eqid 2729 . . . 4 (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡}) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡})
21 sseq1 3969 . . . . . 6 (𝑏 = 𝐴 → (𝑏𝑡𝐴𝑡))
2221rabbidv 3410 . . . . 5 (𝑏 = 𝐴 → {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
2322inteqd 4911 . . . 4 (𝑏 = 𝐴 {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
24 rgspnval.ss . . . . . 6 (𝜑𝐴𝐵)
25 rgspnval.b . . . . . 6 (𝜑𝐵 = (Base‘𝑅))
2624, 25sseqtrd 3980 . . . . 5 (𝜑𝐴 ⊆ (Base‘𝑅))
2714elpw2 5284 . . . . 5 (𝐴 ∈ 𝒫 (Base‘𝑅) ↔ 𝐴 ⊆ (Base‘𝑅))
2826, 27sylibr 234 . . . 4 (𝜑𝐴 ∈ 𝒫 (Base‘𝑅))
29 eqid 2729 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
3029subrgid 20458 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅))
314, 30syl 17 . . . . . . 7 (𝜑 → (Base‘𝑅) ∈ (SubRing‘𝑅))
3225, 31eqeltrd 2828 . . . . . 6 (𝜑𝐵 ∈ (SubRing‘𝑅))
33 sseq2 3970 . . . . . . 7 (𝑡 = 𝐵 → (𝐴𝑡𝐴𝐵))
3433rspcev 3585 . . . . . 6 ((𝐵 ∈ (SubRing‘𝑅) ∧ 𝐴𝐵) → ∃𝑡 ∈ (SubRing‘𝑅)𝐴𝑡)
3532, 24, 34syl2anc 584 . . . . 5 (𝜑 → ∃𝑡 ∈ (SubRing‘𝑅)𝐴𝑡)
36 intexrab 5297 . . . . 5 (∃𝑡 ∈ (SubRing‘𝑅)𝐴𝑡 {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡} ∈ V)
3735, 36sylib 218 . . . 4 (𝜑 {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡} ∈ V)
3820, 23, 28, 37fvmptd3 6973 . . 3 (𝜑 → ((𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡})‘𝐴) = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
3919, 38eqtrd 2764 . 2 (𝜑 → ((RingSpan‘𝑅)‘𝐴) = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
401, 3, 393eqtrd 2768 1 (𝜑𝑈 = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wrex 3053  {crab 3402  Vcvv 3444  wss 3911  𝒫 cpw 4559   cint 4906  cmpt 5183  cfv 6499  Basecbs 17155  Ringcrg 20118  SubRingcsubrg 20454  RingSpancrgspn 20495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mgp 20026  df-ur 20067  df-ring 20120  df-subrg 20455  df-rgspn 20496
This theorem is referenced by:  rgspncl  20498  rgspnssid  20499  rgspnmin  20500  elrgspnlem4  33169
  Copyright terms: Public domain W3C validator