| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rgspnval | Structured version Visualization version GIF version | ||
| Description: Value of the ring-span of a set of elements in a ring. (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| rgspnval.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| rgspnval.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| rgspnval.ss | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| rgspnval.n | ⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) |
| rgspnval.sp | ⊢ (𝜑 → 𝑈 = (𝑁‘𝐴)) |
| Ref | Expression |
|---|---|
| rgspnval | ⊢ (𝜑 → 𝑈 = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgspnval.sp | . 2 ⊢ (𝜑 → 𝑈 = (𝑁‘𝐴)) | |
| 2 | rgspnval.n | . . 3 ⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) | |
| 3 | 2 | fveq1d 6860 | . 2 ⊢ (𝜑 → (𝑁‘𝐴) = ((RingSpan‘𝑅)‘𝐴)) |
| 4 | rgspnval.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 5 | elex 3468 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ V) | |
| 6 | fveq2 6858 | . . . . . . . 8 ⊢ (𝑎 = 𝑅 → (Base‘𝑎) = (Base‘𝑅)) | |
| 7 | 6 | pweqd 4580 | . . . . . . 7 ⊢ (𝑎 = 𝑅 → 𝒫 (Base‘𝑎) = 𝒫 (Base‘𝑅)) |
| 8 | fveq2 6858 | . . . . . . . . 9 ⊢ (𝑎 = 𝑅 → (SubRing‘𝑎) = (SubRing‘𝑅)) | |
| 9 | rabeq 3420 | . . . . . . . . 9 ⊢ ((SubRing‘𝑎) = (SubRing‘𝑅) → {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏 ⊆ 𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡}) | |
| 10 | 8, 9 | syl 17 | . . . . . . . 8 ⊢ (𝑎 = 𝑅 → {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏 ⊆ 𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡}) |
| 11 | 10 | inteqd 4915 | . . . . . . 7 ⊢ (𝑎 = 𝑅 → ∩ {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏 ⊆ 𝑡} = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡}) |
| 12 | 7, 11 | mpteq12dv 5194 | . . . . . 6 ⊢ (𝑎 = 𝑅 → (𝑏 ∈ 𝒫 (Base‘𝑎) ↦ ∩ {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏 ⊆ 𝑡}) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡})) |
| 13 | df-rgspn 20520 | . . . . . 6 ⊢ RingSpan = (𝑎 ∈ V ↦ (𝑏 ∈ 𝒫 (Base‘𝑎) ↦ ∩ {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏 ⊆ 𝑡})) | |
| 14 | fvex 6871 | . . . . . . . 8 ⊢ (Base‘𝑅) ∈ V | |
| 15 | 14 | pwex 5335 | . . . . . . 7 ⊢ 𝒫 (Base‘𝑅) ∈ V |
| 16 | 15 | mptex 7197 | . . . . . 6 ⊢ (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡}) ∈ V |
| 17 | 12, 13, 16 | fvmpt 6968 | . . . . 5 ⊢ (𝑅 ∈ V → (RingSpan‘𝑅) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡})) |
| 18 | 4, 5, 17 | 3syl 18 | . . . 4 ⊢ (𝜑 → (RingSpan‘𝑅) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡})) |
| 19 | 18 | fveq1d 6860 | . . 3 ⊢ (𝜑 → ((RingSpan‘𝑅)‘𝐴) = ((𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡})‘𝐴)) |
| 20 | eqid 2729 | . . . 4 ⊢ (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡}) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡}) | |
| 21 | sseq1 3972 | . . . . . 6 ⊢ (𝑏 = 𝐴 → (𝑏 ⊆ 𝑡 ↔ 𝐴 ⊆ 𝑡)) | |
| 22 | 21 | rabbidv 3413 | . . . . 5 ⊢ (𝑏 = 𝐴 → {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) |
| 23 | 22 | inteqd 4915 | . . . 4 ⊢ (𝑏 = 𝐴 → ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡} = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) |
| 24 | rgspnval.ss | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 25 | rgspnval.b | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
| 26 | 24, 25 | sseqtrd 3983 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ (Base‘𝑅)) |
| 27 | 14 | elpw2 5289 | . . . . 5 ⊢ (𝐴 ∈ 𝒫 (Base‘𝑅) ↔ 𝐴 ⊆ (Base‘𝑅)) |
| 28 | 26, 27 | sylibr 234 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝒫 (Base‘𝑅)) |
| 29 | eqid 2729 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 30 | 29 | subrgid 20482 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 31 | 4, 30 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 32 | 25, 31 | eqeltrd 2828 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝑅)) |
| 33 | sseq2 3973 | . . . . . . 7 ⊢ (𝑡 = 𝐵 → (𝐴 ⊆ 𝑡 ↔ 𝐴 ⊆ 𝐵)) | |
| 34 | 33 | rspcev 3588 | . . . . . 6 ⊢ ((𝐵 ∈ (SubRing‘𝑅) ∧ 𝐴 ⊆ 𝐵) → ∃𝑡 ∈ (SubRing‘𝑅)𝐴 ⊆ 𝑡) |
| 35 | 32, 24, 34 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ∃𝑡 ∈ (SubRing‘𝑅)𝐴 ⊆ 𝑡) |
| 36 | intexrab 5302 | . . . . 5 ⊢ (∃𝑡 ∈ (SubRing‘𝑅)𝐴 ⊆ 𝑡 ↔ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡} ∈ V) | |
| 37 | 35, 36 | sylib 218 | . . . 4 ⊢ (𝜑 → ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡} ∈ V) |
| 38 | 20, 23, 28, 37 | fvmptd3 6991 | . . 3 ⊢ (𝜑 → ((𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡})‘𝐴) = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) |
| 39 | 19, 38 | eqtrd 2764 | . 2 ⊢ (𝜑 → ((RingSpan‘𝑅)‘𝐴) = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) |
| 40 | 1, 3, 39 | 3eqtrd 2768 | 1 ⊢ (𝜑 → 𝑈 = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3405 Vcvv 3447 ⊆ wss 3914 𝒫 cpw 4563 ∩ cint 4910 ↦ cmpt 5188 ‘cfv 6511 Basecbs 17179 Ringcrg 20142 SubRingcsubrg 20478 RingSpancrgspn 20519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mgp 20050 df-ur 20091 df-ring 20144 df-subrg 20479 df-rgspn 20520 |
| This theorem is referenced by: rgspncl 20522 rgspnssid 20523 rgspnmin 20524 elrgspnlem4 33196 |
| Copyright terms: Public domain | W3C validator |