| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rgspnval | Structured version Visualization version GIF version | ||
| Description: Value of the ring-span of a set of elements in a ring. (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| rgspnval.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| rgspnval.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| rgspnval.ss | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| rgspnval.n | ⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) |
| rgspnval.sp | ⊢ (𝜑 → 𝑈 = (𝑁‘𝐴)) |
| Ref | Expression |
|---|---|
| rgspnval | ⊢ (𝜑 → 𝑈 = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgspnval.sp | . 2 ⊢ (𝜑 → 𝑈 = (𝑁‘𝐴)) | |
| 2 | rgspnval.n | . . 3 ⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) | |
| 3 | 2 | fveq1d 6842 | . 2 ⊢ (𝜑 → (𝑁‘𝐴) = ((RingSpan‘𝑅)‘𝐴)) |
| 4 | rgspnval.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 5 | elex 3465 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ V) | |
| 6 | fveq2 6840 | . . . . . . . 8 ⊢ (𝑎 = 𝑅 → (Base‘𝑎) = (Base‘𝑅)) | |
| 7 | 6 | pweqd 4576 | . . . . . . 7 ⊢ (𝑎 = 𝑅 → 𝒫 (Base‘𝑎) = 𝒫 (Base‘𝑅)) |
| 8 | fveq2 6840 | . . . . . . . . 9 ⊢ (𝑎 = 𝑅 → (SubRing‘𝑎) = (SubRing‘𝑅)) | |
| 9 | rabeq 3417 | . . . . . . . . 9 ⊢ ((SubRing‘𝑎) = (SubRing‘𝑅) → {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏 ⊆ 𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡}) | |
| 10 | 8, 9 | syl 17 | . . . . . . . 8 ⊢ (𝑎 = 𝑅 → {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏 ⊆ 𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡}) |
| 11 | 10 | inteqd 4911 | . . . . . . 7 ⊢ (𝑎 = 𝑅 → ∩ {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏 ⊆ 𝑡} = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡}) |
| 12 | 7, 11 | mpteq12dv 5189 | . . . . . 6 ⊢ (𝑎 = 𝑅 → (𝑏 ∈ 𝒫 (Base‘𝑎) ↦ ∩ {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏 ⊆ 𝑡}) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡})) |
| 13 | df-rgspn 20496 | . . . . . 6 ⊢ RingSpan = (𝑎 ∈ V ↦ (𝑏 ∈ 𝒫 (Base‘𝑎) ↦ ∩ {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏 ⊆ 𝑡})) | |
| 14 | fvex 6853 | . . . . . . . 8 ⊢ (Base‘𝑅) ∈ V | |
| 15 | 14 | pwex 5330 | . . . . . . 7 ⊢ 𝒫 (Base‘𝑅) ∈ V |
| 16 | 15 | mptex 7179 | . . . . . 6 ⊢ (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡}) ∈ V |
| 17 | 12, 13, 16 | fvmpt 6950 | . . . . 5 ⊢ (𝑅 ∈ V → (RingSpan‘𝑅) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡})) |
| 18 | 4, 5, 17 | 3syl 18 | . . . 4 ⊢ (𝜑 → (RingSpan‘𝑅) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡})) |
| 19 | 18 | fveq1d 6842 | . . 3 ⊢ (𝜑 → ((RingSpan‘𝑅)‘𝐴) = ((𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡})‘𝐴)) |
| 20 | eqid 2729 | . . . 4 ⊢ (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡}) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡}) | |
| 21 | sseq1 3969 | . . . . . 6 ⊢ (𝑏 = 𝐴 → (𝑏 ⊆ 𝑡 ↔ 𝐴 ⊆ 𝑡)) | |
| 22 | 21 | rabbidv 3410 | . . . . 5 ⊢ (𝑏 = 𝐴 → {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) |
| 23 | 22 | inteqd 4911 | . . . 4 ⊢ (𝑏 = 𝐴 → ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡} = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) |
| 24 | rgspnval.ss | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 25 | rgspnval.b | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
| 26 | 24, 25 | sseqtrd 3980 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ (Base‘𝑅)) |
| 27 | 14 | elpw2 5284 | . . . . 5 ⊢ (𝐴 ∈ 𝒫 (Base‘𝑅) ↔ 𝐴 ⊆ (Base‘𝑅)) |
| 28 | 26, 27 | sylibr 234 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝒫 (Base‘𝑅)) |
| 29 | eqid 2729 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 30 | 29 | subrgid 20458 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 31 | 4, 30 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 32 | 25, 31 | eqeltrd 2828 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝑅)) |
| 33 | sseq2 3970 | . . . . . . 7 ⊢ (𝑡 = 𝐵 → (𝐴 ⊆ 𝑡 ↔ 𝐴 ⊆ 𝐵)) | |
| 34 | 33 | rspcev 3585 | . . . . . 6 ⊢ ((𝐵 ∈ (SubRing‘𝑅) ∧ 𝐴 ⊆ 𝐵) → ∃𝑡 ∈ (SubRing‘𝑅)𝐴 ⊆ 𝑡) |
| 35 | 32, 24, 34 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ∃𝑡 ∈ (SubRing‘𝑅)𝐴 ⊆ 𝑡) |
| 36 | intexrab 5297 | . . . . 5 ⊢ (∃𝑡 ∈ (SubRing‘𝑅)𝐴 ⊆ 𝑡 ↔ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡} ∈ V) | |
| 37 | 35, 36 | sylib 218 | . . . 4 ⊢ (𝜑 → ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡} ∈ V) |
| 38 | 20, 23, 28, 37 | fvmptd3 6973 | . . 3 ⊢ (𝜑 → ((𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡})‘𝐴) = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) |
| 39 | 19, 38 | eqtrd 2764 | . 2 ⊢ (𝜑 → ((RingSpan‘𝑅)‘𝐴) = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) |
| 40 | 1, 3, 39 | 3eqtrd 2768 | 1 ⊢ (𝜑 → 𝑈 = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3402 Vcvv 3444 ⊆ wss 3911 𝒫 cpw 4559 ∩ cint 4906 ↦ cmpt 5183 ‘cfv 6499 Basecbs 17155 Ringcrg 20118 SubRingcsubrg 20454 RingSpancrgspn 20495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mgp 20026 df-ur 20067 df-ring 20120 df-subrg 20455 df-rgspn 20496 |
| This theorem is referenced by: rgspncl 20498 rgspnssid 20499 rgspnmin 20500 elrgspnlem4 33169 |
| Copyright terms: Public domain | W3C validator |