Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rgspnval Structured version   Visualization version   GIF version

Theorem rgspnval 41895
Description: Value of the ring-span of a set of elements in a ring. (Contributed by Stefan O'Rear, 7-Dec-2014.)
Hypotheses
Ref Expression
rgspnval.r (πœ‘ β†’ 𝑅 ∈ Ring)
rgspnval.b (πœ‘ β†’ 𝐡 = (Baseβ€˜π‘…))
rgspnval.ss (πœ‘ β†’ 𝐴 βŠ† 𝐡)
rgspnval.n (πœ‘ β†’ 𝑁 = (RingSpanβ€˜π‘…))
rgspnval.sp (πœ‘ β†’ π‘ˆ = (π‘β€˜π΄))
Assertion
Ref Expression
rgspnval (πœ‘ β†’ π‘ˆ = ∩ {𝑑 ∈ (SubRingβ€˜π‘…) ∣ 𝐴 βŠ† 𝑑})
Distinct variable groups:   πœ‘,𝑑   𝑑,𝑅   𝑑,𝐡   𝑑,𝐴
Allowed substitution hints:   π‘ˆ(𝑑)   𝑁(𝑑)

Proof of Theorem rgspnval
Dummy variables π‘Ž 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rgspnval.sp . 2 (πœ‘ β†’ π‘ˆ = (π‘β€˜π΄))
2 rgspnval.n . . 3 (πœ‘ β†’ 𝑁 = (RingSpanβ€˜π‘…))
32fveq1d 6890 . 2 (πœ‘ β†’ (π‘β€˜π΄) = ((RingSpanβ€˜π‘…)β€˜π΄))
4 rgspnval.r . . . . 5 (πœ‘ β†’ 𝑅 ∈ Ring)
5 elex 3492 . . . . 5 (𝑅 ∈ Ring β†’ 𝑅 ∈ V)
6 fveq2 6888 . . . . . . . 8 (π‘Ž = 𝑅 β†’ (Baseβ€˜π‘Ž) = (Baseβ€˜π‘…))
76pweqd 4618 . . . . . . 7 (π‘Ž = 𝑅 β†’ 𝒫 (Baseβ€˜π‘Ž) = 𝒫 (Baseβ€˜π‘…))
8 fveq2 6888 . . . . . . . . 9 (π‘Ž = 𝑅 β†’ (SubRingβ€˜π‘Ž) = (SubRingβ€˜π‘…))
9 rabeq 3446 . . . . . . . . 9 ((SubRingβ€˜π‘Ž) = (SubRingβ€˜π‘…) β†’ {𝑑 ∈ (SubRingβ€˜π‘Ž) ∣ 𝑏 βŠ† 𝑑} = {𝑑 ∈ (SubRingβ€˜π‘…) ∣ 𝑏 βŠ† 𝑑})
108, 9syl 17 . . . . . . . 8 (π‘Ž = 𝑅 β†’ {𝑑 ∈ (SubRingβ€˜π‘Ž) ∣ 𝑏 βŠ† 𝑑} = {𝑑 ∈ (SubRingβ€˜π‘…) ∣ 𝑏 βŠ† 𝑑})
1110inteqd 4954 . . . . . . 7 (π‘Ž = 𝑅 β†’ ∩ {𝑑 ∈ (SubRingβ€˜π‘Ž) ∣ 𝑏 βŠ† 𝑑} = ∩ {𝑑 ∈ (SubRingβ€˜π‘…) ∣ 𝑏 βŠ† 𝑑})
127, 11mpteq12dv 5238 . . . . . 6 (π‘Ž = 𝑅 β†’ (𝑏 ∈ 𝒫 (Baseβ€˜π‘Ž) ↦ ∩ {𝑑 ∈ (SubRingβ€˜π‘Ž) ∣ 𝑏 βŠ† 𝑑}) = (𝑏 ∈ 𝒫 (Baseβ€˜π‘…) ↦ ∩ {𝑑 ∈ (SubRingβ€˜π‘…) ∣ 𝑏 βŠ† 𝑑}))
13 df-rgspn 20354 . . . . . 6 RingSpan = (π‘Ž ∈ V ↦ (𝑏 ∈ 𝒫 (Baseβ€˜π‘Ž) ↦ ∩ {𝑑 ∈ (SubRingβ€˜π‘Ž) ∣ 𝑏 βŠ† 𝑑}))
14 fvex 6901 . . . . . . . 8 (Baseβ€˜π‘…) ∈ V
1514pwex 5377 . . . . . . 7 𝒫 (Baseβ€˜π‘…) ∈ V
1615mptex 7221 . . . . . 6 (𝑏 ∈ 𝒫 (Baseβ€˜π‘…) ↦ ∩ {𝑑 ∈ (SubRingβ€˜π‘…) ∣ 𝑏 βŠ† 𝑑}) ∈ V
1712, 13, 16fvmpt 6995 . . . . 5 (𝑅 ∈ V β†’ (RingSpanβ€˜π‘…) = (𝑏 ∈ 𝒫 (Baseβ€˜π‘…) ↦ ∩ {𝑑 ∈ (SubRingβ€˜π‘…) ∣ 𝑏 βŠ† 𝑑}))
184, 5, 173syl 18 . . . 4 (πœ‘ β†’ (RingSpanβ€˜π‘…) = (𝑏 ∈ 𝒫 (Baseβ€˜π‘…) ↦ ∩ {𝑑 ∈ (SubRingβ€˜π‘…) ∣ 𝑏 βŠ† 𝑑}))
1918fveq1d 6890 . . 3 (πœ‘ β†’ ((RingSpanβ€˜π‘…)β€˜π΄) = ((𝑏 ∈ 𝒫 (Baseβ€˜π‘…) ↦ ∩ {𝑑 ∈ (SubRingβ€˜π‘…) ∣ 𝑏 βŠ† 𝑑})β€˜π΄))
20 eqid 2732 . . . 4 (𝑏 ∈ 𝒫 (Baseβ€˜π‘…) ↦ ∩ {𝑑 ∈ (SubRingβ€˜π‘…) ∣ 𝑏 βŠ† 𝑑}) = (𝑏 ∈ 𝒫 (Baseβ€˜π‘…) ↦ ∩ {𝑑 ∈ (SubRingβ€˜π‘…) ∣ 𝑏 βŠ† 𝑑})
21 sseq1 4006 . . . . . 6 (𝑏 = 𝐴 β†’ (𝑏 βŠ† 𝑑 ↔ 𝐴 βŠ† 𝑑))
2221rabbidv 3440 . . . . 5 (𝑏 = 𝐴 β†’ {𝑑 ∈ (SubRingβ€˜π‘…) ∣ 𝑏 βŠ† 𝑑} = {𝑑 ∈ (SubRingβ€˜π‘…) ∣ 𝐴 βŠ† 𝑑})
2322inteqd 4954 . . . 4 (𝑏 = 𝐴 β†’ ∩ {𝑑 ∈ (SubRingβ€˜π‘…) ∣ 𝑏 βŠ† 𝑑} = ∩ {𝑑 ∈ (SubRingβ€˜π‘…) ∣ 𝐴 βŠ† 𝑑})
24 rgspnval.ss . . . . . 6 (πœ‘ β†’ 𝐴 βŠ† 𝐡)
25 rgspnval.b . . . . . 6 (πœ‘ β†’ 𝐡 = (Baseβ€˜π‘…))
2624, 25sseqtrd 4021 . . . . 5 (πœ‘ β†’ 𝐴 βŠ† (Baseβ€˜π‘…))
2714elpw2 5344 . . . . 5 (𝐴 ∈ 𝒫 (Baseβ€˜π‘…) ↔ 𝐴 βŠ† (Baseβ€˜π‘…))
2826, 27sylibr 233 . . . 4 (πœ‘ β†’ 𝐴 ∈ 𝒫 (Baseβ€˜π‘…))
29 eqid 2732 . . . . . . . . 9 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
3029subrgid 20357 . . . . . . . 8 (𝑅 ∈ Ring β†’ (Baseβ€˜π‘…) ∈ (SubRingβ€˜π‘…))
314, 30syl 17 . . . . . . 7 (πœ‘ β†’ (Baseβ€˜π‘…) ∈ (SubRingβ€˜π‘…))
3225, 31eqeltrd 2833 . . . . . 6 (πœ‘ β†’ 𝐡 ∈ (SubRingβ€˜π‘…))
33 sseq2 4007 . . . . . . 7 (𝑑 = 𝐡 β†’ (𝐴 βŠ† 𝑑 ↔ 𝐴 βŠ† 𝐡))
3433rspcev 3612 . . . . . 6 ((𝐡 ∈ (SubRingβ€˜π‘…) ∧ 𝐴 βŠ† 𝐡) β†’ βˆƒπ‘‘ ∈ (SubRingβ€˜π‘…)𝐴 βŠ† 𝑑)
3532, 24, 34syl2anc 584 . . . . 5 (πœ‘ β†’ βˆƒπ‘‘ ∈ (SubRingβ€˜π‘…)𝐴 βŠ† 𝑑)
36 intexrab 5339 . . . . 5 (βˆƒπ‘‘ ∈ (SubRingβ€˜π‘…)𝐴 βŠ† 𝑑 ↔ ∩ {𝑑 ∈ (SubRingβ€˜π‘…) ∣ 𝐴 βŠ† 𝑑} ∈ V)
3735, 36sylib 217 . . . 4 (πœ‘ β†’ ∩ {𝑑 ∈ (SubRingβ€˜π‘…) ∣ 𝐴 βŠ† 𝑑} ∈ V)
3820, 23, 28, 37fvmptd3 7018 . . 3 (πœ‘ β†’ ((𝑏 ∈ 𝒫 (Baseβ€˜π‘…) ↦ ∩ {𝑑 ∈ (SubRingβ€˜π‘…) ∣ 𝑏 βŠ† 𝑑})β€˜π΄) = ∩ {𝑑 ∈ (SubRingβ€˜π‘…) ∣ 𝐴 βŠ† 𝑑})
3919, 38eqtrd 2772 . 2 (πœ‘ β†’ ((RingSpanβ€˜π‘…)β€˜π΄) = ∩ {𝑑 ∈ (SubRingβ€˜π‘…) ∣ 𝐴 βŠ† 𝑑})
401, 3, 393eqtrd 2776 1 (πœ‘ β†’ π‘ˆ = ∩ {𝑑 ∈ (SubRingβ€˜π‘…) ∣ 𝐴 βŠ† 𝑑})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070  {crab 3432  Vcvv 3474   βŠ† wss 3947  π’« cpw 4601  βˆ© cint 4949   ↦ cmpt 5230  β€˜cfv 6540  Basecbs 17140  Ringcrg 20049  SubRingcsubrg 20351  RingSpancrgspn 20352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mgp 19982  df-ur 19999  df-ring 20051  df-subrg 20353  df-rgspn 20354
This theorem is referenced by:  rgspncl  41896  rgspnssid  41897  rgspnmin  41898
  Copyright terms: Public domain W3C validator