| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rgspnval | Structured version Visualization version GIF version | ||
| Description: Value of the ring-span of a set of elements in a ring. (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| rgspnval.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| rgspnval.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| rgspnval.ss | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| rgspnval.n | ⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) |
| rgspnval.sp | ⊢ (𝜑 → 𝑈 = (𝑁‘𝐴)) |
| Ref | Expression |
|---|---|
| rgspnval | ⊢ (𝜑 → 𝑈 = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgspnval.sp | . 2 ⊢ (𝜑 → 𝑈 = (𝑁‘𝐴)) | |
| 2 | rgspnval.n | . . 3 ⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) | |
| 3 | 2 | fveq1d 6819 | . 2 ⊢ (𝜑 → (𝑁‘𝐴) = ((RingSpan‘𝑅)‘𝐴)) |
| 4 | rgspnval.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 5 | elex 3457 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ V) | |
| 6 | fveq2 6817 | . . . . . . . 8 ⊢ (𝑎 = 𝑅 → (Base‘𝑎) = (Base‘𝑅)) | |
| 7 | 6 | pweqd 4562 | . . . . . . 7 ⊢ (𝑎 = 𝑅 → 𝒫 (Base‘𝑎) = 𝒫 (Base‘𝑅)) |
| 8 | fveq2 6817 | . . . . . . . . 9 ⊢ (𝑎 = 𝑅 → (SubRing‘𝑎) = (SubRing‘𝑅)) | |
| 9 | rabeq 3409 | . . . . . . . . 9 ⊢ ((SubRing‘𝑎) = (SubRing‘𝑅) → {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏 ⊆ 𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡}) | |
| 10 | 8, 9 | syl 17 | . . . . . . . 8 ⊢ (𝑎 = 𝑅 → {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏 ⊆ 𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡}) |
| 11 | 10 | inteqd 4897 | . . . . . . 7 ⊢ (𝑎 = 𝑅 → ∩ {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏 ⊆ 𝑡} = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡}) |
| 12 | 7, 11 | mpteq12dv 5173 | . . . . . 6 ⊢ (𝑎 = 𝑅 → (𝑏 ∈ 𝒫 (Base‘𝑎) ↦ ∩ {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏 ⊆ 𝑡}) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡})) |
| 13 | df-rgspn 20521 | . . . . . 6 ⊢ RingSpan = (𝑎 ∈ V ↦ (𝑏 ∈ 𝒫 (Base‘𝑎) ↦ ∩ {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏 ⊆ 𝑡})) | |
| 14 | fvex 6830 | . . . . . . . 8 ⊢ (Base‘𝑅) ∈ V | |
| 15 | 14 | pwex 5313 | . . . . . . 7 ⊢ 𝒫 (Base‘𝑅) ∈ V |
| 16 | 15 | mptex 7152 | . . . . . 6 ⊢ (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡}) ∈ V |
| 17 | 12, 13, 16 | fvmpt 6924 | . . . . 5 ⊢ (𝑅 ∈ V → (RingSpan‘𝑅) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡})) |
| 18 | 4, 5, 17 | 3syl 18 | . . . 4 ⊢ (𝜑 → (RingSpan‘𝑅) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡})) |
| 19 | 18 | fveq1d 6819 | . . 3 ⊢ (𝜑 → ((RingSpan‘𝑅)‘𝐴) = ((𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡})‘𝐴)) |
| 20 | eqid 2731 | . . . 4 ⊢ (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡}) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡}) | |
| 21 | sseq1 3955 | . . . . . 6 ⊢ (𝑏 = 𝐴 → (𝑏 ⊆ 𝑡 ↔ 𝐴 ⊆ 𝑡)) | |
| 22 | 21 | rabbidv 3402 | . . . . 5 ⊢ (𝑏 = 𝐴 → {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) |
| 23 | 22 | inteqd 4897 | . . . 4 ⊢ (𝑏 = 𝐴 → ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡} = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) |
| 24 | rgspnval.ss | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 25 | rgspnval.b | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
| 26 | 24, 25 | sseqtrd 3966 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ (Base‘𝑅)) |
| 27 | 14 | elpw2 5267 | . . . . 5 ⊢ (𝐴 ∈ 𝒫 (Base‘𝑅) ↔ 𝐴 ⊆ (Base‘𝑅)) |
| 28 | 26, 27 | sylibr 234 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝒫 (Base‘𝑅)) |
| 29 | eqid 2731 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 30 | 29 | subrgid 20483 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 31 | 4, 30 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 32 | 25, 31 | eqeltrd 2831 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝑅)) |
| 33 | sseq2 3956 | . . . . . . 7 ⊢ (𝑡 = 𝐵 → (𝐴 ⊆ 𝑡 ↔ 𝐴 ⊆ 𝐵)) | |
| 34 | 33 | rspcev 3572 | . . . . . 6 ⊢ ((𝐵 ∈ (SubRing‘𝑅) ∧ 𝐴 ⊆ 𝐵) → ∃𝑡 ∈ (SubRing‘𝑅)𝐴 ⊆ 𝑡) |
| 35 | 32, 24, 34 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ∃𝑡 ∈ (SubRing‘𝑅)𝐴 ⊆ 𝑡) |
| 36 | intexrab 5280 | . . . . 5 ⊢ (∃𝑡 ∈ (SubRing‘𝑅)𝐴 ⊆ 𝑡 ↔ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡} ∈ V) | |
| 37 | 35, 36 | sylib 218 | . . . 4 ⊢ (𝜑 → ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡} ∈ V) |
| 38 | 20, 23, 28, 37 | fvmptd3 6947 | . . 3 ⊢ (𝜑 → ((𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡})‘𝐴) = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) |
| 39 | 19, 38 | eqtrd 2766 | . 2 ⊢ (𝜑 → ((RingSpan‘𝑅)‘𝐴) = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) |
| 40 | 1, 3, 39 | 3eqtrd 2770 | 1 ⊢ (𝜑 → 𝑈 = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 {crab 3395 Vcvv 3436 ⊆ wss 3897 𝒫 cpw 4545 ∩ cint 4892 ↦ cmpt 5167 ‘cfv 6476 Basecbs 17115 Ringcrg 20146 SubRingcsubrg 20479 RingSpancrgspn 20520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mgp 20054 df-ur 20095 df-ring 20148 df-subrg 20480 df-rgspn 20521 |
| This theorem is referenced by: rgspncl 20523 rgspnssid 20524 rgspnmin 20525 elrgspnlem4 33204 |
| Copyright terms: Public domain | W3C validator |