MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rgspnval Structured version   Visualization version   GIF version

Theorem rgspnval 20515
Description: Value of the ring-span of a set of elements in a ring. (Contributed by Stefan O'Rear, 7-Dec-2014.)
Hypotheses
Ref Expression
rgspnval.r (𝜑𝑅 ∈ Ring)
rgspnval.b (𝜑𝐵 = (Base‘𝑅))
rgspnval.ss (𝜑𝐴𝐵)
rgspnval.n (𝜑𝑁 = (RingSpan‘𝑅))
rgspnval.sp (𝜑𝑈 = (𝑁𝐴))
Assertion
Ref Expression
rgspnval (𝜑𝑈 = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
Distinct variable groups:   𝜑,𝑡   𝑡,𝑅   𝑡,𝐵   𝑡,𝐴
Allowed substitution hints:   𝑈(𝑡)   𝑁(𝑡)

Proof of Theorem rgspnval
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rgspnval.sp . 2 (𝜑𝑈 = (𝑁𝐴))
2 rgspnval.n . . 3 (𝜑𝑁 = (RingSpan‘𝑅))
32fveq1d 6828 . 2 (𝜑 → (𝑁𝐴) = ((RingSpan‘𝑅)‘𝐴))
4 rgspnval.r . . . . 5 (𝜑𝑅 ∈ Ring)
5 elex 3459 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ V)
6 fveq2 6826 . . . . . . . 8 (𝑎 = 𝑅 → (Base‘𝑎) = (Base‘𝑅))
76pweqd 4570 . . . . . . 7 (𝑎 = 𝑅 → 𝒫 (Base‘𝑎) = 𝒫 (Base‘𝑅))
8 fveq2 6826 . . . . . . . . 9 (𝑎 = 𝑅 → (SubRing‘𝑎) = (SubRing‘𝑅))
9 rabeq 3411 . . . . . . . . 9 ((SubRing‘𝑎) = (SubRing‘𝑅) → {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡})
108, 9syl 17 . . . . . . . 8 (𝑎 = 𝑅 → {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡})
1110inteqd 4904 . . . . . . 7 (𝑎 = 𝑅 {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡})
127, 11mpteq12dv 5182 . . . . . 6 (𝑎 = 𝑅 → (𝑏 ∈ 𝒫 (Base‘𝑎) ↦ {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏𝑡}) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡}))
13 df-rgspn 20514 . . . . . 6 RingSpan = (𝑎 ∈ V ↦ (𝑏 ∈ 𝒫 (Base‘𝑎) ↦ {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏𝑡}))
14 fvex 6839 . . . . . . . 8 (Base‘𝑅) ∈ V
1514pwex 5322 . . . . . . 7 𝒫 (Base‘𝑅) ∈ V
1615mptex 7163 . . . . . 6 (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡}) ∈ V
1712, 13, 16fvmpt 6934 . . . . 5 (𝑅 ∈ V → (RingSpan‘𝑅) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡}))
184, 5, 173syl 18 . . . 4 (𝜑 → (RingSpan‘𝑅) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡}))
1918fveq1d 6828 . . 3 (𝜑 → ((RingSpan‘𝑅)‘𝐴) = ((𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡})‘𝐴))
20 eqid 2729 . . . 4 (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡}) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡})
21 sseq1 3963 . . . . . 6 (𝑏 = 𝐴 → (𝑏𝑡𝐴𝑡))
2221rabbidv 3404 . . . . 5 (𝑏 = 𝐴 → {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
2322inteqd 4904 . . . 4 (𝑏 = 𝐴 {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
24 rgspnval.ss . . . . . 6 (𝜑𝐴𝐵)
25 rgspnval.b . . . . . 6 (𝜑𝐵 = (Base‘𝑅))
2624, 25sseqtrd 3974 . . . . 5 (𝜑𝐴 ⊆ (Base‘𝑅))
2714elpw2 5276 . . . . 5 (𝐴 ∈ 𝒫 (Base‘𝑅) ↔ 𝐴 ⊆ (Base‘𝑅))
2826, 27sylibr 234 . . . 4 (𝜑𝐴 ∈ 𝒫 (Base‘𝑅))
29 eqid 2729 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
3029subrgid 20476 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅))
314, 30syl 17 . . . . . . 7 (𝜑 → (Base‘𝑅) ∈ (SubRing‘𝑅))
3225, 31eqeltrd 2828 . . . . . 6 (𝜑𝐵 ∈ (SubRing‘𝑅))
33 sseq2 3964 . . . . . . 7 (𝑡 = 𝐵 → (𝐴𝑡𝐴𝐵))
3433rspcev 3579 . . . . . 6 ((𝐵 ∈ (SubRing‘𝑅) ∧ 𝐴𝐵) → ∃𝑡 ∈ (SubRing‘𝑅)𝐴𝑡)
3532, 24, 34syl2anc 584 . . . . 5 (𝜑 → ∃𝑡 ∈ (SubRing‘𝑅)𝐴𝑡)
36 intexrab 5289 . . . . 5 (∃𝑡 ∈ (SubRing‘𝑅)𝐴𝑡 {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡} ∈ V)
3735, 36sylib 218 . . . 4 (𝜑 {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡} ∈ V)
3820, 23, 28, 37fvmptd3 6957 . . 3 (𝜑 → ((𝑏 ∈ 𝒫 (Base‘𝑅) ↦ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏𝑡})‘𝐴) = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
3919, 38eqtrd 2764 . 2 (𝜑 → ((RingSpan‘𝑅)‘𝐴) = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
401, 3, 393eqtrd 2768 1 (𝜑𝑈 = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴𝑡})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wrex 3053  {crab 3396  Vcvv 3438  wss 3905  𝒫 cpw 4553   cint 4899  cmpt 5176  cfv 6486  Basecbs 17138  Ringcrg 20136  SubRingcsubrg 20472  RingSpancrgspn 20513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mgp 20044  df-ur 20085  df-ring 20138  df-subrg 20473  df-rgspn 20514
This theorem is referenced by:  rgspncl  20516  rgspnssid  20517  rgspnmin  20518  elrgspnlem4  33198
  Copyright terms: Public domain W3C validator