Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rgspnval | Structured version Visualization version GIF version |
Description: Value of the ring-span of a set of elements in a ring. (Contributed by Stefan O'Rear, 7-Dec-2014.) |
Ref | Expression |
---|---|
rgspnval.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
rgspnval.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
rgspnval.ss | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
rgspnval.n | ⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) |
rgspnval.sp | ⊢ (𝜑 → 𝑈 = (𝑁‘𝐴)) |
Ref | Expression |
---|---|
rgspnval | ⊢ (𝜑 → 𝑈 = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgspnval.sp | . 2 ⊢ (𝜑 → 𝑈 = (𝑁‘𝐴)) | |
2 | rgspnval.n | . . 3 ⊢ (𝜑 → 𝑁 = (RingSpan‘𝑅)) | |
3 | 2 | fveq1d 6758 | . 2 ⊢ (𝜑 → (𝑁‘𝐴) = ((RingSpan‘𝑅)‘𝐴)) |
4 | rgspnval.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
5 | elex 3440 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ V) | |
6 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑎 = 𝑅 → (Base‘𝑎) = (Base‘𝑅)) | |
7 | 6 | pweqd 4549 | . . . . . . 7 ⊢ (𝑎 = 𝑅 → 𝒫 (Base‘𝑎) = 𝒫 (Base‘𝑅)) |
8 | fveq2 6756 | . . . . . . . . 9 ⊢ (𝑎 = 𝑅 → (SubRing‘𝑎) = (SubRing‘𝑅)) | |
9 | rabeq 3408 | . . . . . . . . 9 ⊢ ((SubRing‘𝑎) = (SubRing‘𝑅) → {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏 ⊆ 𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡}) | |
10 | 8, 9 | syl 17 | . . . . . . . 8 ⊢ (𝑎 = 𝑅 → {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏 ⊆ 𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡}) |
11 | 10 | inteqd 4881 | . . . . . . 7 ⊢ (𝑎 = 𝑅 → ∩ {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏 ⊆ 𝑡} = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡}) |
12 | 7, 11 | mpteq12dv 5161 | . . . . . 6 ⊢ (𝑎 = 𝑅 → (𝑏 ∈ 𝒫 (Base‘𝑎) ↦ ∩ {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏 ⊆ 𝑡}) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡})) |
13 | df-rgspn 19938 | . . . . . 6 ⊢ RingSpan = (𝑎 ∈ V ↦ (𝑏 ∈ 𝒫 (Base‘𝑎) ↦ ∩ {𝑡 ∈ (SubRing‘𝑎) ∣ 𝑏 ⊆ 𝑡})) | |
14 | fvex 6769 | . . . . . . . 8 ⊢ (Base‘𝑅) ∈ V | |
15 | 14 | pwex 5298 | . . . . . . 7 ⊢ 𝒫 (Base‘𝑅) ∈ V |
16 | 15 | mptex 7081 | . . . . . 6 ⊢ (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡}) ∈ V |
17 | 12, 13, 16 | fvmpt 6857 | . . . . 5 ⊢ (𝑅 ∈ V → (RingSpan‘𝑅) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡})) |
18 | 4, 5, 17 | 3syl 18 | . . . 4 ⊢ (𝜑 → (RingSpan‘𝑅) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡})) |
19 | 18 | fveq1d 6758 | . . 3 ⊢ (𝜑 → ((RingSpan‘𝑅)‘𝐴) = ((𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡})‘𝐴)) |
20 | eqid 2738 | . . . 4 ⊢ (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡}) = (𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡}) | |
21 | sseq1 3942 | . . . . . 6 ⊢ (𝑏 = 𝐴 → (𝑏 ⊆ 𝑡 ↔ 𝐴 ⊆ 𝑡)) | |
22 | 21 | rabbidv 3404 | . . . . 5 ⊢ (𝑏 = 𝐴 → {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡} = {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) |
23 | 22 | inteqd 4881 | . . . 4 ⊢ (𝑏 = 𝐴 → ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡} = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) |
24 | rgspnval.ss | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
25 | rgspnval.b | . . . . . 6 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
26 | 24, 25 | sseqtrd 3957 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ (Base‘𝑅)) |
27 | 14 | elpw2 5264 | . . . . 5 ⊢ (𝐴 ∈ 𝒫 (Base‘𝑅) ↔ 𝐴 ⊆ (Base‘𝑅)) |
28 | 26, 27 | sylibr 233 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝒫 (Base‘𝑅)) |
29 | eqid 2738 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
30 | 29 | subrgid 19941 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
31 | 4, 30 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
32 | 25, 31 | eqeltrd 2839 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝑅)) |
33 | sseq2 3943 | . . . . . . 7 ⊢ (𝑡 = 𝐵 → (𝐴 ⊆ 𝑡 ↔ 𝐴 ⊆ 𝐵)) | |
34 | 33 | rspcev 3552 | . . . . . 6 ⊢ ((𝐵 ∈ (SubRing‘𝑅) ∧ 𝐴 ⊆ 𝐵) → ∃𝑡 ∈ (SubRing‘𝑅)𝐴 ⊆ 𝑡) |
35 | 32, 24, 34 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → ∃𝑡 ∈ (SubRing‘𝑅)𝐴 ⊆ 𝑡) |
36 | intexrab 5259 | . . . . 5 ⊢ (∃𝑡 ∈ (SubRing‘𝑅)𝐴 ⊆ 𝑡 ↔ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡} ∈ V) | |
37 | 35, 36 | sylib 217 | . . . 4 ⊢ (𝜑 → ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡} ∈ V) |
38 | 20, 23, 28, 37 | fvmptd3 6880 | . . 3 ⊢ (𝜑 → ((𝑏 ∈ 𝒫 (Base‘𝑅) ↦ ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝑏 ⊆ 𝑡})‘𝐴) = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) |
39 | 19, 38 | eqtrd 2778 | . 2 ⊢ (𝜑 → ((RingSpan‘𝑅)‘𝐴) = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) |
40 | 1, 3, 39 | 3eqtrd 2782 | 1 ⊢ (𝜑 → 𝑈 = ∩ {𝑡 ∈ (SubRing‘𝑅) ∣ 𝐴 ⊆ 𝑡}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 {crab 3067 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 ∩ cint 4876 ↦ cmpt 5153 ‘cfv 6418 Basecbs 16840 Ringcrg 19698 SubRingcsubrg 19935 RingSpancrgspn 19936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mgp 19636 df-ur 19653 df-ring 19700 df-subrg 19937 df-rgspn 19938 |
This theorem is referenced by: rgspncl 40910 rgspnssid 40911 rgspnmin 40912 |
Copyright terms: Public domain | W3C validator |