MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubrg Structured version   Visualization version   GIF version

Theorem issubrg 19466
Description: The subring predicate. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Proof shortened by AV, 12-Oct-2020.)
Hypotheses
Ref Expression
issubrg.b 𝐵 = (Base‘𝑅)
issubrg.i 1 = (1r𝑅)
Assertion
Ref Expression
issubrg (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴𝐵1𝐴)))

Proof of Theorem issubrg
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subrg 19464 . . 3 SubRing = (𝑟 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑟) ∣ ((𝑟s 𝑠) ∈ Ring ∧ (1r𝑟) ∈ 𝑠)})
21mptrcl 6770 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
3 simpll 763 . 2 (((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴𝐵1𝐴)) → 𝑅 ∈ Ring)
4 fveq2 6664 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
5 issubrg.b . . . . . . . 8 𝐵 = (Base‘𝑅)
64, 5syl6eqr 2874 . . . . . . 7 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
76pweqd 4542 . . . . . 6 (𝑟 = 𝑅 → 𝒫 (Base‘𝑟) = 𝒫 𝐵)
8 oveq1 7152 . . . . . . . 8 (𝑟 = 𝑅 → (𝑟s 𝑠) = (𝑅s 𝑠))
98eleq1d 2897 . . . . . . 7 (𝑟 = 𝑅 → ((𝑟s 𝑠) ∈ Ring ↔ (𝑅s 𝑠) ∈ Ring))
10 fveq2 6664 . . . . . . . . 9 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
11 issubrg.i . . . . . . . . 9 1 = (1r𝑅)
1210, 11syl6eqr 2874 . . . . . . . 8 (𝑟 = 𝑅 → (1r𝑟) = 1 )
1312eleq1d 2897 . . . . . . 7 (𝑟 = 𝑅 → ((1r𝑟) ∈ 𝑠1𝑠))
149, 13anbi12d 630 . . . . . 6 (𝑟 = 𝑅 → (((𝑟s 𝑠) ∈ Ring ∧ (1r𝑟) ∈ 𝑠) ↔ ((𝑅s 𝑠) ∈ Ring ∧ 1𝑠)))
157, 14rabeqbidv 3486 . . . . 5 (𝑟 = 𝑅 → {𝑠 ∈ 𝒫 (Base‘𝑟) ∣ ((𝑟s 𝑠) ∈ Ring ∧ (1r𝑟) ∈ 𝑠)} = {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅s 𝑠) ∈ Ring ∧ 1𝑠)})
165fvexi 6678 . . . . . . 7 𝐵 ∈ V
1716pwex 5273 . . . . . 6 𝒫 𝐵 ∈ V
1817rabex 5227 . . . . 5 {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅s 𝑠) ∈ Ring ∧ 1𝑠)} ∈ V
1915, 1, 18fvmpt 6762 . . . 4 (𝑅 ∈ Ring → (SubRing‘𝑅) = {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅s 𝑠) ∈ Ring ∧ 1𝑠)})
2019eleq2d 2898 . . 3 (𝑅 ∈ Ring → (𝐴 ∈ (SubRing‘𝑅) ↔ 𝐴 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅s 𝑠) ∈ Ring ∧ 1𝑠)}))
21 oveq2 7153 . . . . . . . 8 (𝑠 = 𝐴 → (𝑅s 𝑠) = (𝑅s 𝐴))
2221eleq1d 2897 . . . . . . 7 (𝑠 = 𝐴 → ((𝑅s 𝑠) ∈ Ring ↔ (𝑅s 𝐴) ∈ Ring))
23 eleq2 2901 . . . . . . 7 (𝑠 = 𝐴 → ( 1𝑠1𝐴))
2422, 23anbi12d 630 . . . . . 6 (𝑠 = 𝐴 → (((𝑅s 𝑠) ∈ Ring ∧ 1𝑠) ↔ ((𝑅s 𝐴) ∈ Ring ∧ 1𝐴)))
2524elrab 3679 . . . . 5 (𝐴 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅s 𝑠) ∈ Ring ∧ 1𝑠)} ↔ (𝐴 ∈ 𝒫 𝐵 ∧ ((𝑅s 𝐴) ∈ Ring ∧ 1𝐴)))
2616elpw2 5240 . . . . . 6 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
2726anbi1i 623 . . . . 5 ((𝐴 ∈ 𝒫 𝐵 ∧ ((𝑅s 𝐴) ∈ Ring ∧ 1𝐴)) ↔ (𝐴𝐵 ∧ ((𝑅s 𝐴) ∈ Ring ∧ 1𝐴)))
28 an12 641 . . . . 5 ((𝐴𝐵 ∧ ((𝑅s 𝐴) ∈ Ring ∧ 1𝐴)) ↔ ((𝑅s 𝐴) ∈ Ring ∧ (𝐴𝐵1𝐴)))
2925, 27, 283bitri 298 . . . 4 (𝐴 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅s 𝑠) ∈ Ring ∧ 1𝑠)} ↔ ((𝑅s 𝐴) ∈ Ring ∧ (𝐴𝐵1𝐴)))
30 ibar 529 . . . . 5 (𝑅 ∈ Ring → ((𝑅s 𝐴) ∈ Ring ↔ (𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring)))
3130anbi1d 629 . . . 4 (𝑅 ∈ Ring → (((𝑅s 𝐴) ∈ Ring ∧ (𝐴𝐵1𝐴)) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴𝐵1𝐴))))
3229, 31syl5bb 284 . . 3 (𝑅 ∈ Ring → (𝐴 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅s 𝑠) ∈ Ring ∧ 1𝑠)} ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴𝐵1𝐴))))
3320, 32bitrd 280 . 2 (𝑅 ∈ Ring → (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴𝐵1𝐴))))
342, 3, 33pm5.21nii 380 1 (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴𝐵1𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1528  wcel 2105  {crab 3142  wss 3935  𝒫 cpw 4537  cfv 6349  (class class class)co 7145  Basecbs 16473  s cress 16474  1rcur 19182  Ringcrg 19228  SubRingcsubrg 19462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4833  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fv 6357  df-ov 7148  df-subrg 19464
This theorem is referenced by:  subrgss  19467  subrgid  19468  subrgring  19469  subrgrcl  19471  subrg1cl  19474  issubrg2  19486  subsubrg  19492  subrgpropd  19501  issubassa  20028  subrgpsr  20129  cphsubrglem  23710
  Copyright terms: Public domain W3C validator