MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubrg Structured version   Visualization version   GIF version

Theorem issubrg 19939
Description: The subring predicate. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Proof shortened by AV, 12-Oct-2020.)
Hypotheses
Ref Expression
issubrg.b 𝐵 = (Base‘𝑅)
issubrg.i 1 = (1r𝑅)
Assertion
Ref Expression
issubrg (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴𝐵1𝐴)))

Proof of Theorem issubrg
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subrg 19937 . . 3 SubRing = (𝑟 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑟) ∣ ((𝑟s 𝑠) ∈ Ring ∧ (1r𝑟) ∈ 𝑠)})
21mptrcl 6866 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
3 simpll 763 . 2 (((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴𝐵1𝐴)) → 𝑅 ∈ Ring)
4 fveq2 6756 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
5 issubrg.b . . . . . . . 8 𝐵 = (Base‘𝑅)
64, 5eqtr4di 2797 . . . . . . 7 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
76pweqd 4549 . . . . . 6 (𝑟 = 𝑅 → 𝒫 (Base‘𝑟) = 𝒫 𝐵)
8 oveq1 7262 . . . . . . . 8 (𝑟 = 𝑅 → (𝑟s 𝑠) = (𝑅s 𝑠))
98eleq1d 2823 . . . . . . 7 (𝑟 = 𝑅 → ((𝑟s 𝑠) ∈ Ring ↔ (𝑅s 𝑠) ∈ Ring))
10 fveq2 6756 . . . . . . . . 9 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
11 issubrg.i . . . . . . . . 9 1 = (1r𝑅)
1210, 11eqtr4di 2797 . . . . . . . 8 (𝑟 = 𝑅 → (1r𝑟) = 1 )
1312eleq1d 2823 . . . . . . 7 (𝑟 = 𝑅 → ((1r𝑟) ∈ 𝑠1𝑠))
149, 13anbi12d 630 . . . . . 6 (𝑟 = 𝑅 → (((𝑟s 𝑠) ∈ Ring ∧ (1r𝑟) ∈ 𝑠) ↔ ((𝑅s 𝑠) ∈ Ring ∧ 1𝑠)))
157, 14rabeqbidv 3410 . . . . 5 (𝑟 = 𝑅 → {𝑠 ∈ 𝒫 (Base‘𝑟) ∣ ((𝑟s 𝑠) ∈ Ring ∧ (1r𝑟) ∈ 𝑠)} = {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅s 𝑠) ∈ Ring ∧ 1𝑠)})
165fvexi 6770 . . . . . . 7 𝐵 ∈ V
1716pwex 5298 . . . . . 6 𝒫 𝐵 ∈ V
1817rabex 5251 . . . . 5 {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅s 𝑠) ∈ Ring ∧ 1𝑠)} ∈ V
1915, 1, 18fvmpt 6857 . . . 4 (𝑅 ∈ Ring → (SubRing‘𝑅) = {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅s 𝑠) ∈ Ring ∧ 1𝑠)})
2019eleq2d 2824 . . 3 (𝑅 ∈ Ring → (𝐴 ∈ (SubRing‘𝑅) ↔ 𝐴 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅s 𝑠) ∈ Ring ∧ 1𝑠)}))
21 oveq2 7263 . . . . . . . 8 (𝑠 = 𝐴 → (𝑅s 𝑠) = (𝑅s 𝐴))
2221eleq1d 2823 . . . . . . 7 (𝑠 = 𝐴 → ((𝑅s 𝑠) ∈ Ring ↔ (𝑅s 𝐴) ∈ Ring))
23 eleq2 2827 . . . . . . 7 (𝑠 = 𝐴 → ( 1𝑠1𝐴))
2422, 23anbi12d 630 . . . . . 6 (𝑠 = 𝐴 → (((𝑅s 𝑠) ∈ Ring ∧ 1𝑠) ↔ ((𝑅s 𝐴) ∈ Ring ∧ 1𝐴)))
2524elrab 3617 . . . . 5 (𝐴 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅s 𝑠) ∈ Ring ∧ 1𝑠)} ↔ (𝐴 ∈ 𝒫 𝐵 ∧ ((𝑅s 𝐴) ∈ Ring ∧ 1𝐴)))
2616elpw2 5264 . . . . . 6 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
2726anbi1i 623 . . . . 5 ((𝐴 ∈ 𝒫 𝐵 ∧ ((𝑅s 𝐴) ∈ Ring ∧ 1𝐴)) ↔ (𝐴𝐵 ∧ ((𝑅s 𝐴) ∈ Ring ∧ 1𝐴)))
28 an12 641 . . . . 5 ((𝐴𝐵 ∧ ((𝑅s 𝐴) ∈ Ring ∧ 1𝐴)) ↔ ((𝑅s 𝐴) ∈ Ring ∧ (𝐴𝐵1𝐴)))
2925, 27, 283bitri 296 . . . 4 (𝐴 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅s 𝑠) ∈ Ring ∧ 1𝑠)} ↔ ((𝑅s 𝐴) ∈ Ring ∧ (𝐴𝐵1𝐴)))
30 ibar 528 . . . . 5 (𝑅 ∈ Ring → ((𝑅s 𝐴) ∈ Ring ↔ (𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring)))
3130anbi1d 629 . . . 4 (𝑅 ∈ Ring → (((𝑅s 𝐴) ∈ Ring ∧ (𝐴𝐵1𝐴)) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴𝐵1𝐴))))
3229, 31syl5bb 282 . . 3 (𝑅 ∈ Ring → (𝐴 ∈ {𝑠 ∈ 𝒫 𝐵 ∣ ((𝑅s 𝑠) ∈ Ring ∧ 1𝑠)} ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴𝐵1𝐴))))
3320, 32bitrd 278 . 2 (𝑅 ∈ Ring → (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴𝐵1𝐴))))
342, 3, 33pm5.21nii 379 1 (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅s 𝐴) ∈ Ring) ∧ (𝐴𝐵1𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  {crab 3067  wss 3883  𝒫 cpw 4530  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  1rcur 19652  Ringcrg 19698  SubRingcsubrg 19935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-subrg 19937
This theorem is referenced by:  subrgss  19940  subrgid  19941  subrgring  19942  subrgrcl  19944  subrg1cl  19947  issubrg2  19959  subsubrg  19965  subrgpropd  19974  issubassa  20983  subrgpsr  21098  cphsubrglem  24246
  Copyright terms: Public domain W3C validator