MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-subrg Structured version   Visualization version   GIF version

Definition df-subrg 20528
Description: Define a subring of a ring as a set of elements that is a ring in its own right and contains the multiplicative identity.

The additional constraint is necessary because the multiplicative identity of a ring, unlike the additive identity of a ring/group or the multiplicative identity of a field, cannot be identified by a local property. Thus, it is possible for a subset of a ring to be a ring while not containing the true identity if it contains a false identity. For instance, the subset (ℤ × {0}) of (ℤ × ℤ) (where multiplication is componentwise) contains the false identity ⟨1, 0⟩ which preserves every element of the subset and thus appears to be the identity of the subset, but is not the identity of the larger ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)

Assertion
Ref Expression
df-subrg SubRing = (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)})
Distinct variable group:   𝑤,𝑠

Detailed syntax breakdown of Definition df-subrg
StepHypRef Expression
1 csubrg 20527 . 2 class SubRing
2 vw . . 3 setvar 𝑤
3 crg 20191 . . 3 class Ring
42cv 1539 . . . . . . 7 class 𝑤
5 vs . . . . . . . 8 setvar 𝑠
65cv 1539 . . . . . . 7 class 𝑠
7 cress 17249 . . . . . . 7 class s
84, 6, 7co 7403 . . . . . 6 class (𝑤s 𝑠)
98, 3wcel 2108 . . . . 5 wff (𝑤s 𝑠) ∈ Ring
10 cur 20139 . . . . . . 7 class 1r
114, 10cfv 6530 . . . . . 6 class (1r𝑤)
1211, 6wcel 2108 . . . . 5 wff (1r𝑤) ∈ 𝑠
139, 12wa 395 . . . 4 wff ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)
14 cbs 17226 . . . . . 6 class Base
154, 14cfv 6530 . . . . 5 class (Base‘𝑤)
1615cpw 4575 . . . 4 class 𝒫 (Base‘𝑤)
1713, 5, 16crab 3415 . . 3 class {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)}
182, 3, 17cmpt 5201 . 2 class (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)})
191, 18wceq 1540 1 wff SubRing = (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)})
Colors of variables: wff setvar class
This definition is referenced by:  issubrg  20529
  Copyright terms: Public domain W3C validator