MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-subrg Structured version   Visualization version   GIF version

Definition df-subrg 20479
Description: Define a subring of a ring as a set of elements that is a ring in its own right and contains the multiplicative identity.

The additional constraint is necessary because the multiplicative identity of a ring, unlike the additive identity of a ring/group or the multiplicative identity of a field, cannot be identified by a local property. Thus, it is possible for a subset of a ring to be a ring while not containing the true identity if it contains a false identity. For instance, the subset (ℤ × {0}) of (ℤ × ℤ) (where multiplication is componentwise) contains the false identity ⟨1, 0⟩ which preserves every element of the subset and thus appears to be the identity of the subset, but is not the identity of the larger ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)

Assertion
Ref Expression
df-subrg SubRing = (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)})
Distinct variable group:   𝑤,𝑠

Detailed syntax breakdown of Definition df-subrg
StepHypRef Expression
1 csubrg 20478 . 2 class SubRing
2 vw . . 3 setvar 𝑤
3 crg 20142 . . 3 class Ring
42cv 1539 . . . . . . 7 class 𝑤
5 vs . . . . . . . 8 setvar 𝑠
65cv 1539 . . . . . . 7 class 𝑠
7 cress 17200 . . . . . . 7 class s
84, 6, 7co 7387 . . . . . 6 class (𝑤s 𝑠)
98, 3wcel 2109 . . . . 5 wff (𝑤s 𝑠) ∈ Ring
10 cur 20090 . . . . . . 7 class 1r
114, 10cfv 6511 . . . . . 6 class (1r𝑤)
1211, 6wcel 2109 . . . . 5 wff (1r𝑤) ∈ 𝑠
139, 12wa 395 . . . 4 wff ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)
14 cbs 17179 . . . . . 6 class Base
154, 14cfv 6511 . . . . 5 class (Base‘𝑤)
1615cpw 4563 . . . 4 class 𝒫 (Base‘𝑤)
1713, 5, 16crab 3405 . . 3 class {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)}
182, 3, 17cmpt 5188 . 2 class (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)})
191, 18wceq 1540 1 wff SubRing = (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)})
Colors of variables: wff setvar class
This definition is referenced by:  issubrg  20480
  Copyright terms: Public domain W3C validator