MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-subrg Structured version   Visualization version   GIF version

Definition df-subrg 20486
Description: Define a subring of a ring as a set of elements that is a ring in its own right and contains the multiplicative identity.

The additional constraint is necessary because the multiplicative identity of a ring, unlike the additive identity of a ring/group or the multiplicative identity of a field, cannot be identified by a local property. Thus, it is possible for a subset of a ring to be a ring while not containing the true identity if it contains a false identity. For instance, the subset (ℤ × {0}) of (ℤ × ℤ) (where multiplication is componentwise) contains the false identity ⟨1, 0⟩ which preserves every element of the subset and thus appears to be the identity of the subset, but is not the identity of the larger ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)

Assertion
Ref Expression
df-subrg SubRing = (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)})
Distinct variable group:   𝑤,𝑠

Detailed syntax breakdown of Definition df-subrg
StepHypRef Expression
1 csubrg 20485 . 2 class SubRing
2 vw . . 3 setvar 𝑤
3 crg 20149 . . 3 class Ring
42cv 1539 . . . . . . 7 class 𝑤
5 vs . . . . . . . 8 setvar 𝑠
65cv 1539 . . . . . . 7 class 𝑠
7 cress 17207 . . . . . . 7 class s
84, 6, 7co 7390 . . . . . 6 class (𝑤s 𝑠)
98, 3wcel 2109 . . . . 5 wff (𝑤s 𝑠) ∈ Ring
10 cur 20097 . . . . . . 7 class 1r
114, 10cfv 6514 . . . . . 6 class (1r𝑤)
1211, 6wcel 2109 . . . . 5 wff (1r𝑤) ∈ 𝑠
139, 12wa 395 . . . 4 wff ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)
14 cbs 17186 . . . . . 6 class Base
154, 14cfv 6514 . . . . 5 class (Base‘𝑤)
1615cpw 4566 . . . 4 class 𝒫 (Base‘𝑤)
1713, 5, 16crab 3408 . . 3 class {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)}
182, 3, 17cmpt 5191 . 2 class (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)})
191, 18wceq 1540 1 wff SubRing = (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)})
Colors of variables: wff setvar class
This definition is referenced by:  issubrg  20487
  Copyright terms: Public domain W3C validator