MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-subrg Structured version   Visualization version   GIF version

Definition df-subrg 20119
Description: Define a subring of a ring as a set of elements that is a ring in its own right and contains the multiplicative identity.

The additional constraint is necessary because the multiplicative identity of a ring, unlike the additive identity of a ring/group or the multiplicative identity of a field, cannot be identified by a local property. Thus, it is possible for a subset of a ring to be a ring while not containing the true identity if it contains a false identity. For instance, the subset (ℤ × {0}) of (ℤ × ℤ) (where multiplication is componentwise) contains the false identity ⟨1, 0⟩ which preserves every element of the subset and thus appears to be the identity of the subset, but is not the identity of the larger ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)

Assertion
Ref Expression
df-subrg SubRing = (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)})
Distinct variable group:   𝑤,𝑠

Detailed syntax breakdown of Definition df-subrg
StepHypRef Expression
1 csubrg 20117 . 2 class SubRing
2 vw . . 3 setvar 𝑤
3 crg 19870 . . 3 class Ring
42cv 1539 . . . . . . 7 class 𝑤
5 vs . . . . . . . 8 setvar 𝑠
65cv 1539 . . . . . . 7 class 𝑠
7 cress 17030 . . . . . . 7 class s
84, 6, 7co 7329 . . . . . 6 class (𝑤s 𝑠)
98, 3wcel 2105 . . . . 5 wff (𝑤s 𝑠) ∈ Ring
10 cur 19824 . . . . . . 7 class 1r
114, 10cfv 6473 . . . . . 6 class (1r𝑤)
1211, 6wcel 2105 . . . . 5 wff (1r𝑤) ∈ 𝑠
139, 12wa 396 . . . 4 wff ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)
14 cbs 17001 . . . . . 6 class Base
154, 14cfv 6473 . . . . 5 class (Base‘𝑤)
1615cpw 4546 . . . 4 class 𝒫 (Base‘𝑤)
1713, 5, 16crab 3403 . . 3 class {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)}
182, 3, 17cmpt 5172 . 2 class (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)})
191, 18wceq 1540 1 wff SubRing = (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)})
Colors of variables: wff setvar class
This definition is referenced by:  issubrg  20121
  Copyright terms: Public domain W3C validator