MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ric Structured version   Visualization version   GIF version

Definition df-ric 20393
Description: Define the ring isomorphism relation, analogous to df-gic 19172: Two (unital) rings are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic rings share all global ring properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by AV, 24-Dec-2019.)
Assertion
Ref Expression
df-ric 𝑟 = ( RingIso “ (V ∖ 1o))

Detailed syntax breakdown of Definition df-ric
StepHypRef Expression
1 cric 20389 . 2 class 𝑟
2 crs 20388 . . . 4 class RingIso
32ccnv 5613 . . 3 class RingIso
4 cvv 3436 . . . 4 class V
5 c1o 8378 . . . 4 class 1o
64, 5cdif 3894 . . 3 class (V ∖ 1o)
73, 6cima 5617 . 2 class ( RingIso “ (V ∖ 1o))
81, 7wceq 1541 1 wff 𝑟 = ( RingIso “ (V ∖ 1o))
Colors of variables: wff setvar class
This definition is referenced by:  brric  20419
  Copyright terms: Public domain W3C validator