MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ric Structured version   Visualization version   GIF version

Definition df-ric 19962
Description: Define the ring isomorphism relation, analogous to df-gic 18876: Two (unital) rings are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic rings share all global ring properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by AV, 24-Dec-2019.)
Assertion
Ref Expression
df-ric 𝑟 = ( RingIso “ (V ∖ 1o))

Detailed syntax breakdown of Definition df-ric
StepHypRef Expression
1 cric 19958 . 2 class 𝑟
2 crs 19957 . . . 4 class RingIso
32ccnv 5588 . . 3 class RingIso
4 cvv 3432 . . . 4 class V
5 c1o 8290 . . . 4 class 1o
64, 5cdif 3884 . . 3 class (V ∖ 1o)
73, 6cima 5592 . 2 class ( RingIso “ (V ∖ 1o))
81, 7wceq 1539 1 wff 𝑟 = ( RingIso “ (V ∖ 1o))
Colors of variables: wff setvar class
This definition is referenced by:  brric  19988
  Copyright terms: Public domain W3C validator