MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ric Structured version   Visualization version   GIF version

Definition df-ric 19877
Description: Define the ring isomorphism relation, analogous to df-gic 18791: Two (unital) rings are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic rings share all global ring properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by AV, 24-Dec-2019.)
Assertion
Ref Expression
df-ric 𝑟 = ( RingIso “ (V ∖ 1o))

Detailed syntax breakdown of Definition df-ric
StepHypRef Expression
1 cric 19873 . 2 class 𝑟
2 crs 19872 . . . 4 class RingIso
32ccnv 5579 . . 3 class RingIso
4 cvv 3422 . . . 4 class V
5 c1o 8260 . . . 4 class 1o
64, 5cdif 3880 . . 3 class (V ∖ 1o)
73, 6cima 5583 . 2 class ( RingIso “ (V ∖ 1o))
81, 7wceq 1539 1 wff 𝑟 = ( RingIso “ (V ∖ 1o))
Colors of variables: wff setvar class
This definition is referenced by:  brric  19903
  Copyright terms: Public domain W3C validator