Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ric Structured version   Visualization version   GIF version

Definition df-ric 19449
 Description: Define the ring isomorphism relation, analogous to df-gic 18379: Two (unital) rings are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic rings share all global ring properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by AV, 24-Dec-2019.)
Assertion
Ref Expression
df-ric 𝑟 = ( RingIso “ (V ∖ 1o))

Detailed syntax breakdown of Definition df-ric
StepHypRef Expression
1 cric 19445 . 2 class 𝑟
2 crs 19444 . . . 4 class RingIso
32ccnv 5527 . . 3 class RingIso
4 cvv 3471 . . . 4 class V
5 c1o 8070 . . . 4 class 1o
64, 5cdif 3907 . . 3 class (V ∖ 1o)
73, 6cima 5531 . 2 class ( RingIso “ (V ∖ 1o))
81, 7wceq 1538 1 wff 𝑟 = ( RingIso “ (V ∖ 1o))
 Colors of variables: wff setvar class This definition is referenced by:  brric  19475
 Copyright terms: Public domain W3C validator