Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brric | Structured version Visualization version GIF version |
Description: The relation "is isomorphic to" for (unital) rings. (Contributed by AV, 24-Dec-2019.) |
Ref | Expression |
---|---|
brric | ⊢ (𝑅 ≃𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ric 19962 | . 2 ⊢ ≃𝑟 = (◡ RingIso “ (V ∖ 1o)) | |
2 | ovex 7308 | . . . . 5 ⊢ (𝑟 RingHom 𝑠) ∈ V | |
3 | rabexg 5255 | . . . . 5 ⊢ ((𝑟 RingHom 𝑠) ∈ V → {ℎ ∈ (𝑟 RingHom 𝑠) ∣ ◡ℎ ∈ (𝑠 RingHom 𝑟)} ∈ V) | |
4 | 2, 3 | mp1i 13 | . . . 4 ⊢ ((𝑟 ∈ V ∧ 𝑠 ∈ V) → {ℎ ∈ (𝑟 RingHom 𝑠) ∣ ◡ℎ ∈ (𝑠 RingHom 𝑟)} ∈ V) |
5 | 4 | rgen2 3120 | . . 3 ⊢ ∀𝑟 ∈ V ∀𝑠 ∈ V {ℎ ∈ (𝑟 RingHom 𝑠) ∣ ◡ℎ ∈ (𝑠 RingHom 𝑟)} ∈ V |
6 | df-rngiso 19960 | . . . 4 ⊢ RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {ℎ ∈ (𝑟 RingHom 𝑠) ∣ ◡ℎ ∈ (𝑠 RingHom 𝑟)}) | |
7 | 6 | fnmpo 7909 | . . 3 ⊢ (∀𝑟 ∈ V ∀𝑠 ∈ V {ℎ ∈ (𝑟 RingHom 𝑠) ∣ ◡ℎ ∈ (𝑠 RingHom 𝑟)} ∈ V → RingIso Fn (V × V)) |
8 | 5, 7 | ax-mp 5 | . 2 ⊢ RingIso Fn (V × V) |
9 | 1, 8 | brwitnlem 8337 | 1 ⊢ (𝑅 ≃𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 {crab 3068 Vcvv 3432 ∅c0 4256 class class class wbr 5074 × cxp 5587 ◡ccnv 5588 Fn wfn 6428 (class class class)co 7275 RingHom crh 19956 RingIso crs 19957 ≃𝑟 cric 19958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-1o 8297 df-rngiso 19960 df-ric 19962 |
This theorem is referenced by: brric2 19989 mat1ric 21636 scmatric 21686 matcpmric 21908 pmmpric 21972 |
Copyright terms: Public domain | W3C validator |