| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brric | Structured version Visualization version GIF version | ||
| Description: The relation "is isomorphic to" for (unital) rings. (Contributed by AV, 24-Dec-2019.) |
| Ref | Expression |
|---|---|
| brric | ⊢ (𝑅 ≃𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ric 20360 | . 2 ⊢ ≃𝑟 = (◡ RingIso “ (V ∖ 1o)) | |
| 2 | ovex 7382 | . . . . 5 ⊢ (𝑟 RingHom 𝑠) ∈ V | |
| 3 | rabexg 5276 | . . . . 5 ⊢ ((𝑟 RingHom 𝑠) ∈ V → {ℎ ∈ (𝑟 RingHom 𝑠) ∣ ◡ℎ ∈ (𝑠 RingHom 𝑟)} ∈ V) | |
| 4 | 2, 3 | mp1i 13 | . . . 4 ⊢ ((𝑟 ∈ V ∧ 𝑠 ∈ V) → {ℎ ∈ (𝑟 RingHom 𝑠) ∣ ◡ℎ ∈ (𝑠 RingHom 𝑟)} ∈ V) |
| 5 | 4 | rgen2 3169 | . . 3 ⊢ ∀𝑟 ∈ V ∀𝑠 ∈ V {ℎ ∈ (𝑟 RingHom 𝑠) ∣ ◡ℎ ∈ (𝑠 RingHom 𝑟)} ∈ V |
| 6 | df-rim 20358 | . . . 4 ⊢ RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {ℎ ∈ (𝑟 RingHom 𝑠) ∣ ◡ℎ ∈ (𝑠 RingHom 𝑟)}) | |
| 7 | 6 | fnmpo 8004 | . . 3 ⊢ (∀𝑟 ∈ V ∀𝑠 ∈ V {ℎ ∈ (𝑟 RingHom 𝑠) ∣ ◡ℎ ∈ (𝑠 RingHom 𝑟)} ∈ V → RingIso Fn (V × V)) |
| 8 | 5, 7 | ax-mp 5 | . 2 ⊢ RingIso Fn (V × V) |
| 9 | 1, 8 | brwitnlem 8425 | 1 ⊢ (𝑅 ≃𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 {crab 3394 Vcvv 3436 ∅c0 4284 class class class wbr 5092 × cxp 5617 ◡ccnv 5618 Fn wfn 6477 (class class class)co 7349 RingHom crh 20354 RingIso crs 20355 ≃𝑟 cric 20356 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-1o 8388 df-rim 20358 df-ric 20360 |
| This theorem is referenced by: brrici 20390 brric2 20391 mat1ric 22372 scmatric 22422 matcpmric 22644 pmmpric 22708 ricsym 42502 rictr 42503 riccrng1 42504 ricdrng1 42511 |
| Copyright terms: Public domain | W3C validator |