MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brric Structured version   Visualization version   GIF version

Theorem brric 20419
Description: The relation "is isomorphic to" for (unital) rings. (Contributed by AV, 24-Dec-2019.)
Assertion
Ref Expression
brric (𝑅𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅)

Proof of Theorem brric
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ric 20393 . 2 𝑟 = ( RingIso “ (V ∖ 1o))
2 ovex 7379 . . . . 5 (𝑟 RingHom 𝑠) ∈ V
3 rabexg 5273 . . . . 5 ((𝑟 RingHom 𝑠) ∈ V → { ∈ (𝑟 RingHom 𝑠) ∣ ∈ (𝑠 RingHom 𝑟)} ∈ V)
42, 3mp1i 13 . . . 4 ((𝑟 ∈ V ∧ 𝑠 ∈ V) → { ∈ (𝑟 RingHom 𝑠) ∣ ∈ (𝑠 RingHom 𝑟)} ∈ V)
54rgen2 3172 . . 3 𝑟 ∈ V ∀𝑠 ∈ V { ∈ (𝑟 RingHom 𝑠) ∣ ∈ (𝑠 RingHom 𝑟)} ∈ V
6 df-rim 20391 . . . 4 RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ { ∈ (𝑟 RingHom 𝑠) ∣ ∈ (𝑠 RingHom 𝑟)})
76fnmpo 8001 . . 3 (∀𝑟 ∈ V ∀𝑠 ∈ V { ∈ (𝑟 RingHom 𝑠) ∣ ∈ (𝑠 RingHom 𝑟)} ∈ V → RingIso Fn (V × V))
85, 7ax-mp 5 . 2 RingIso Fn (V × V)
91, 8brwitnlem 8422 1 (𝑅𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2111  wne 2928  wral 3047  {crab 3395  Vcvv 3436  c0 4280   class class class wbr 5089   × cxp 5612  ccnv 5613   Fn wfn 6476  (class class class)co 7346   RingHom crh 20387   RingIso crs 20388  𝑟 cric 20389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-1o 8385  df-rim 20391  df-ric 20393
This theorem is referenced by:  brrici  20420  brric2  20421  mat1ric  22402  scmatric  22452  matcpmric  22674  pmmpric  22738  ricsym  42622  rictr  42623  riccrng1  42624  ricdrng1  42631
  Copyright terms: Public domain W3C validator