MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brric Structured version   Visualization version   GIF version

Theorem brric 19499
Description: The relation "is isomorphic to" for (unital) rings. (Contributed by AV, 24-Dec-2019.)
Assertion
Ref Expression
brric (𝑅𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅)

Proof of Theorem brric
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ric 19470 . 2 𝑟 = ( RingIso “ (V ∖ 1o))
2 ovex 7189 . . . . 5 (𝑟 RingHom 𝑠) ∈ V
3 rabexg 5234 . . . . 5 ((𝑟 RingHom 𝑠) ∈ V → { ∈ (𝑟 RingHom 𝑠) ∣ ∈ (𝑠 RingHom 𝑟)} ∈ V)
42, 3mp1i 13 . . . 4 ((𝑟 ∈ V ∧ 𝑠 ∈ V) → { ∈ (𝑟 RingHom 𝑠) ∣ ∈ (𝑠 RingHom 𝑟)} ∈ V)
54rgen2 3203 . . 3 𝑟 ∈ V ∀𝑠 ∈ V { ∈ (𝑟 RingHom 𝑠) ∣ ∈ (𝑠 RingHom 𝑟)} ∈ V
6 df-rngiso 19468 . . . 4 RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ { ∈ (𝑟 RingHom 𝑠) ∣ ∈ (𝑠 RingHom 𝑟)})
76fnmpo 7767 . . 3 (∀𝑟 ∈ V ∀𝑠 ∈ V { ∈ (𝑟 RingHom 𝑠) ∣ ∈ (𝑠 RingHom 𝑟)} ∈ V → RingIso Fn (V × V))
85, 7ax-mp 5 . 2 RingIso Fn (V × V)
91, 8brwitnlem 8132 1 (𝑅𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  wcel 2114  wne 3016  wral 3138  {crab 3142  Vcvv 3494  c0 4291   class class class wbr 5066   × cxp 5553  ccnv 5554   Fn wfn 6350  (class class class)co 7156   RingHom crh 19464   RingIso crs 19465  𝑟 cric 19466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-1o 8102  df-rngiso 19468  df-ric 19470
This theorem is referenced by:  brric2  19500  mat1ric  21096  scmatric  21146  matcpmric  21367  pmmpric  21431
  Copyright terms: Public domain W3C validator