![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brric | Structured version Visualization version GIF version |
Description: The relation "is isomorphic to" for (unital) rings. (Contributed by AV, 24-Dec-2019.) |
Ref | Expression |
---|---|
brric | ⊢ (𝑅 ≃𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ric 20501 | . 2 ⊢ ≃𝑟 = (◡ RingIso “ (V ∖ 1o)) | |
2 | ovex 7481 | . . . . 5 ⊢ (𝑟 RingHom 𝑠) ∈ V | |
3 | rabexg 5355 | . . . . 5 ⊢ ((𝑟 RingHom 𝑠) ∈ V → {ℎ ∈ (𝑟 RingHom 𝑠) ∣ ◡ℎ ∈ (𝑠 RingHom 𝑟)} ∈ V) | |
4 | 2, 3 | mp1i 13 | . . . 4 ⊢ ((𝑟 ∈ V ∧ 𝑠 ∈ V) → {ℎ ∈ (𝑟 RingHom 𝑠) ∣ ◡ℎ ∈ (𝑠 RingHom 𝑟)} ∈ V) |
5 | 4 | rgen2 3205 | . . 3 ⊢ ∀𝑟 ∈ V ∀𝑠 ∈ V {ℎ ∈ (𝑟 RingHom 𝑠) ∣ ◡ℎ ∈ (𝑠 RingHom 𝑟)} ∈ V |
6 | df-rim 20499 | . . . 4 ⊢ RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {ℎ ∈ (𝑟 RingHom 𝑠) ∣ ◡ℎ ∈ (𝑠 RingHom 𝑟)}) | |
7 | 6 | fnmpo 8110 | . . 3 ⊢ (∀𝑟 ∈ V ∀𝑠 ∈ V {ℎ ∈ (𝑟 RingHom 𝑠) ∣ ◡ℎ ∈ (𝑠 RingHom 𝑟)} ∈ V → RingIso Fn (V × V)) |
8 | 5, 7 | ax-mp 5 | . 2 ⊢ RingIso Fn (V × V) |
9 | 1, 8 | brwitnlem 8563 | 1 ⊢ (𝑅 ≃𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 {crab 3443 Vcvv 3488 ∅c0 4352 class class class wbr 5166 × cxp 5698 ◡ccnv 5699 Fn wfn 6568 (class class class)co 7448 RingHom crh 20495 RingIso crs 20496 ≃𝑟 cric 20497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-1o 8522 df-rim 20499 df-ric 20501 |
This theorem is referenced by: brrici 20531 brric2 20532 mat1ric 22514 scmatric 22564 matcpmric 22786 pmmpric 22850 ricsym 42474 rictr 42475 riccrng1 42476 ricdrng1 42483 |
Copyright terms: Public domain | W3C validator |