| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brric | Structured version Visualization version GIF version | ||
| Description: The relation "is isomorphic to" for (unital) rings. (Contributed by AV, 24-Dec-2019.) |
| Ref | Expression |
|---|---|
| brric | ⊢ (𝑅 ≃𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ric 20393 | . 2 ⊢ ≃𝑟 = (◡ RingIso “ (V ∖ 1o)) | |
| 2 | ovex 7379 | . . . . 5 ⊢ (𝑟 RingHom 𝑠) ∈ V | |
| 3 | rabexg 5273 | . . . . 5 ⊢ ((𝑟 RingHom 𝑠) ∈ V → {ℎ ∈ (𝑟 RingHom 𝑠) ∣ ◡ℎ ∈ (𝑠 RingHom 𝑟)} ∈ V) | |
| 4 | 2, 3 | mp1i 13 | . . . 4 ⊢ ((𝑟 ∈ V ∧ 𝑠 ∈ V) → {ℎ ∈ (𝑟 RingHom 𝑠) ∣ ◡ℎ ∈ (𝑠 RingHom 𝑟)} ∈ V) |
| 5 | 4 | rgen2 3172 | . . 3 ⊢ ∀𝑟 ∈ V ∀𝑠 ∈ V {ℎ ∈ (𝑟 RingHom 𝑠) ∣ ◡ℎ ∈ (𝑠 RingHom 𝑟)} ∈ V |
| 6 | df-rim 20391 | . . . 4 ⊢ RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {ℎ ∈ (𝑟 RingHom 𝑠) ∣ ◡ℎ ∈ (𝑠 RingHom 𝑟)}) | |
| 7 | 6 | fnmpo 8001 | . . 3 ⊢ (∀𝑟 ∈ V ∀𝑠 ∈ V {ℎ ∈ (𝑟 RingHom 𝑠) ∣ ◡ℎ ∈ (𝑠 RingHom 𝑟)} ∈ V → RingIso Fn (V × V)) |
| 8 | 5, 7 | ax-mp 5 | . 2 ⊢ RingIso Fn (V × V) |
| 9 | 1, 8 | brwitnlem 8422 | 1 ⊢ (𝑅 ≃𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 {crab 3395 Vcvv 3436 ∅c0 4280 class class class wbr 5089 × cxp 5612 ◡ccnv 5613 Fn wfn 6476 (class class class)co 7346 RingHom crh 20387 RingIso crs 20388 ≃𝑟 cric 20389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-1o 8385 df-rim 20391 df-ric 20393 |
| This theorem is referenced by: brrici 20420 brric2 20421 mat1ric 22402 scmatric 22452 matcpmric 22674 pmmpric 22738 ricsym 42622 rictr 42623 riccrng1 42624 ricdrng1 42631 |
| Copyright terms: Public domain | W3C validator |