![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-right | Structured version Visualization version GIF version |
Description: Define the right options of a surreal. This is the set of surreals that are simpler and greater than the given surreal. (Contributed by Scott Fenton, 6-Aug-2024.) |
Ref | Expression |
---|---|
df-right | ⊢ R = (𝑥 ∈ No ↦ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cright 27330 | . 2 class R | |
2 | vx | . . 3 setvar 𝑥 | |
3 | csur 27132 | . . 3 class No | |
4 | 2 | cv 1540 | . . . . 5 class 𝑥 |
5 | vy | . . . . . 6 setvar 𝑦 | |
6 | 5 | cv 1540 | . . . . 5 class 𝑦 |
7 | cslt 27133 | . . . . 5 class <s | |
8 | 4, 6, 7 | wbr 5147 | . . . 4 wff 𝑥 <s 𝑦 |
9 | cbday 27134 | . . . . . 6 class bday | |
10 | 4, 9 | cfv 6540 | . . . . 5 class ( bday ‘𝑥) |
11 | cold 27327 | . . . . 5 class O | |
12 | 10, 11 | cfv 6540 | . . . 4 class ( O ‘( bday ‘𝑥)) |
13 | 8, 5, 12 | crab 3432 | . . 3 class {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦} |
14 | 2, 3, 13 | cmpt 5230 | . 2 class (𝑥 ∈ No ↦ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦}) |
15 | 1, 14 | wceq 1541 | 1 wff R = (𝑥 ∈ No ↦ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦}) |
Colors of variables: wff setvar class |
This definition is referenced by: rightval 27348 rightf 27350 |
Copyright terms: Public domain | W3C validator |