MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-right Structured version   Visualization version   GIF version

Definition df-right 27791
Description: Define the right options of a surreal. This is the set of surreals that are simpler and greater than the given surreal. (Contributed by Scott Fenton, 6-Aug-2024.)
Assertion
Ref Expression
df-right R = (𝑥 No ↦ {𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑥 <s 𝑦})
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-right
StepHypRef Expression
1 cright 27786 . 2 class R
2 vx . . 3 setvar 𝑥
3 csur 27586 . . 3 class No
42cv 1533 . . . . 5 class 𝑥
5 vy . . . . . 6 setvar 𝑦
65cv 1533 . . . . 5 class 𝑦
7 cslt 27587 . . . . 5 class <s
84, 6, 7wbr 5148 . . . 4 wff 𝑥 <s 𝑦
9 cbday 27588 . . . . . 6 class bday
104, 9cfv 6548 . . . . 5 class ( bday 𝑥)
11 cold 27783 . . . . 5 class O
1210, 11cfv 6548 . . . 4 class ( O ‘( bday 𝑥))
138, 5, 12crab 3429 . . 3 class {𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑥 <s 𝑦}
142, 3, 13cmpt 5231 . 2 class (𝑥 No ↦ {𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑥 <s 𝑦})
151, 14wceq 1534 1 wff R = (𝑥 No ↦ {𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑥 <s 𝑦})
Colors of variables: wff setvar class
This definition is referenced by:  rightval  27804  rightf  27806
  Copyright terms: Public domain W3C validator