Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madeval Structured version   Visualization version   GIF version

Theorem madeval 33963
Description: The value of the made by function. (Contributed by Scott Fenton, 17-Dec-2021.)
Assertion
Ref Expression
madeval (𝐴 ∈ On → ( M ‘𝐴) = ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))))

Proof of Theorem madeval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-made 33958 . . 3 M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥))))
21tfr2 8200 . 2 (𝐴 ∈ On → ( M ‘𝐴) = ((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))‘( M ↾ 𝐴)))
3 eqid 2738 . . 3 (𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥))) = (𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))
4 rneq 5834 . . . . . . . 8 (𝑥 = ( M ↾ 𝐴) → ran 𝑥 = ran ( M ↾ 𝐴))
5 df-ima 5593 . . . . . . . 8 ( M “ 𝐴) = ran ( M ↾ 𝐴)
64, 5eqtr4di 2797 . . . . . . 7 (𝑥 = ( M ↾ 𝐴) → ran 𝑥 = ( M “ 𝐴))
76unieqd 4850 . . . . . 6 (𝑥 = ( M ↾ 𝐴) → ran 𝑥 = ( M “ 𝐴))
87pweqd 4549 . . . . 5 (𝑥 = ( M ↾ 𝐴) → 𝒫 ran 𝑥 = 𝒫 ( M “ 𝐴))
98sqxpeqd 5612 . . . 4 (𝑥 = ( M ↾ 𝐴) → (𝒫 ran 𝑥 × 𝒫 ran 𝑥) = (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)))
109imaeq2d 5958 . . 3 (𝑥 = ( M ↾ 𝐴) → ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)) = ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))))
111tfr1 8199 . . . . 5 M Fn On
12 fnfun 6517 . . . . 5 ( M Fn On → Fun M )
1311, 12ax-mp 5 . . . 4 Fun M
14 resfunexg 7073 . . . 4 ((Fun M ∧ 𝐴 ∈ On) → ( M ↾ 𝐴) ∈ V)
1513, 14mpan 686 . . 3 (𝐴 ∈ On → ( M ↾ 𝐴) ∈ V)
16 scutf 33933 . . . . 5 |s : <<s ⟶ No
17 ffun 6587 . . . . 5 ( |s : <<s ⟶ No → Fun |s )
1816, 17ax-mp 5 . . . 4 Fun |s
19 funimaexg 6504 . . . . . . 7 ((Fun M ∧ 𝐴 ∈ On) → ( M “ 𝐴) ∈ V)
2013, 19mpan 686 . . . . . 6 (𝐴 ∈ On → ( M “ 𝐴) ∈ V)
21 uniexg 7571 . . . . . 6 (( M “ 𝐴) ∈ V → ( M “ 𝐴) ∈ V)
22 pwexg 5296 . . . . . 6 ( ( M “ 𝐴) ∈ V → 𝒫 ( M “ 𝐴) ∈ V)
2320, 21, 223syl 18 . . . . 5 (𝐴 ∈ On → 𝒫 ( M “ 𝐴) ∈ V)
2423, 23xpexd 7579 . . . 4 (𝐴 ∈ On → (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∈ V)
25 funimaexg 6504 . . . 4 ((Fun |s ∧ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∈ V) → ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) ∈ V)
2618, 24, 25sylancr 586 . . 3 (𝐴 ∈ On → ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) ∈ V)
273, 10, 15, 26fvmptd3 6880 . 2 (𝐴 ∈ On → ((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))‘( M ↾ 𝐴)) = ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))))
282, 27eqtrd 2778 1 (𝐴 ∈ On → ( M ‘𝐴) = ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  𝒫 cpw 4530   cuni 4836  cmpt 5153   × cxp 5578  ran crn 5581  cres 5582  cima 5583  Oncon0 6251  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418   No csur 33770   <<s csslt 33902   |s cscut 33904   M cmade 33953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-1o 8267  df-2o 8268  df-no 33773  df-slt 33774  df-bday 33775  df-sslt 33903  df-scut 33905  df-made 33958
This theorem is referenced by:  madeval2  33964
  Copyright terms: Public domain W3C validator