![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > madeval | Structured version Visualization version GIF version |
Description: The value of the made by function. (Contributed by Scott Fenton, 17-Dec-2021.) |
Ref | Expression |
---|---|
madeval | ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ( |s “ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-made 27904 | . . 3 ⊢ M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) | |
2 | 1 | tfr2 8454 | . 2 ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))‘( M ↾ 𝐴))) |
3 | eqid 2740 | . . 3 ⊢ (𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥))) = (𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥))) | |
4 | rneq 5961 | . . . . . . . 8 ⊢ (𝑥 = ( M ↾ 𝐴) → ran 𝑥 = ran ( M ↾ 𝐴)) | |
5 | df-ima 5713 | . . . . . . . 8 ⊢ ( M “ 𝐴) = ran ( M ↾ 𝐴) | |
6 | 4, 5 | eqtr4di 2798 | . . . . . . 7 ⊢ (𝑥 = ( M ↾ 𝐴) → ran 𝑥 = ( M “ 𝐴)) |
7 | 6 | unieqd 4944 | . . . . . 6 ⊢ (𝑥 = ( M ↾ 𝐴) → ∪ ran 𝑥 = ∪ ( M “ 𝐴)) |
8 | 7 | pweqd 4639 | . . . . 5 ⊢ (𝑥 = ( M ↾ 𝐴) → 𝒫 ∪ ran 𝑥 = 𝒫 ∪ ( M “ 𝐴)) |
9 | 8 | sqxpeqd 5732 | . . . 4 ⊢ (𝑥 = ( M ↾ 𝐴) → (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥) = (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴))) |
10 | 9 | imaeq2d 6089 | . . 3 ⊢ (𝑥 = ( M ↾ 𝐴) → ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)) = ( |s “ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)))) |
11 | 1 | tfr1 8453 | . . . . 5 ⊢ M Fn On |
12 | fnfun 6679 | . . . . 5 ⊢ ( M Fn On → Fun M ) | |
13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ Fun M |
14 | resfunexg 7252 | . . . 4 ⊢ ((Fun M ∧ 𝐴 ∈ On) → ( M ↾ 𝐴) ∈ V) | |
15 | 13, 14 | mpan 689 | . . 3 ⊢ (𝐴 ∈ On → ( M ↾ 𝐴) ∈ V) |
16 | scutf 27875 | . . . . 5 ⊢ |s : <<s ⟶ No | |
17 | ffun 6750 | . . . . 5 ⊢ ( |s : <<s ⟶ No → Fun |s ) | |
18 | 16, 17 | ax-mp 5 | . . . 4 ⊢ Fun |s |
19 | funimaexg 6664 | . . . . . . 7 ⊢ ((Fun M ∧ 𝐴 ∈ On) → ( M “ 𝐴) ∈ V) | |
20 | 13, 19 | mpan 689 | . . . . . 6 ⊢ (𝐴 ∈ On → ( M “ 𝐴) ∈ V) |
21 | uniexg 7775 | . . . . . 6 ⊢ (( M “ 𝐴) ∈ V → ∪ ( M “ 𝐴) ∈ V) | |
22 | pwexg 5396 | . . . . . 6 ⊢ (∪ ( M “ 𝐴) ∈ V → 𝒫 ∪ ( M “ 𝐴) ∈ V) | |
23 | 20, 21, 22 | 3syl 18 | . . . . 5 ⊢ (𝐴 ∈ On → 𝒫 ∪ ( M “ 𝐴) ∈ V) |
24 | 23, 23 | xpexd 7786 | . . . 4 ⊢ (𝐴 ∈ On → (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)) ∈ V) |
25 | funimaexg 6664 | . . . 4 ⊢ ((Fun |s ∧ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)) ∈ V) → ( |s “ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴))) ∈ V) | |
26 | 18, 24, 25 | sylancr 586 | . . 3 ⊢ (𝐴 ∈ On → ( |s “ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴))) ∈ V) |
27 | 3, 10, 15, 26 | fvmptd3 7052 | . 2 ⊢ (𝐴 ∈ On → ((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))‘( M ↾ 𝐴)) = ( |s “ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)))) |
28 | 2, 27 | eqtrd 2780 | 1 ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ( |s “ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 𝒫 cpw 4622 ∪ cuni 4931 ↦ cmpt 5249 × cxp 5698 ran crn 5701 ↾ cres 5702 “ cima 5703 Oncon0 6395 Fun wfun 6567 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 No csur 27702 <<s csslt 27843 |s cscut 27845 M cmade 27899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-1o 8522 df-2o 8523 df-no 27705 df-slt 27706 df-bday 27707 df-sslt 27844 df-scut 27846 df-made 27904 |
This theorem is referenced by: madeval2 27910 madefi 27968 |
Copyright terms: Public domain | W3C validator |