| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > madeval | Structured version Visualization version GIF version | ||
| Description: The value of the made by function. (Contributed by Scott Fenton, 17-Dec-2021.) |
| Ref | Expression |
|---|---|
| madeval | ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ( |s “ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-made 27762 | . . 3 ⊢ M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) | |
| 2 | 1 | tfr2 8369 | . 2 ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))‘( M ↾ 𝐴))) |
| 3 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥))) = (𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥))) | |
| 4 | rneq 5903 | . . . . . . . 8 ⊢ (𝑥 = ( M ↾ 𝐴) → ran 𝑥 = ran ( M ↾ 𝐴)) | |
| 5 | df-ima 5654 | . . . . . . . 8 ⊢ ( M “ 𝐴) = ran ( M ↾ 𝐴) | |
| 6 | 4, 5 | eqtr4di 2783 | . . . . . . 7 ⊢ (𝑥 = ( M ↾ 𝐴) → ran 𝑥 = ( M “ 𝐴)) |
| 7 | 6 | unieqd 4887 | . . . . . 6 ⊢ (𝑥 = ( M ↾ 𝐴) → ∪ ran 𝑥 = ∪ ( M “ 𝐴)) |
| 8 | 7 | pweqd 4583 | . . . . 5 ⊢ (𝑥 = ( M ↾ 𝐴) → 𝒫 ∪ ran 𝑥 = 𝒫 ∪ ( M “ 𝐴)) |
| 9 | 8 | sqxpeqd 5673 | . . . 4 ⊢ (𝑥 = ( M ↾ 𝐴) → (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥) = (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴))) |
| 10 | 9 | imaeq2d 6034 | . . 3 ⊢ (𝑥 = ( M ↾ 𝐴) → ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)) = ( |s “ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)))) |
| 11 | 1 | tfr1 8368 | . . . . 5 ⊢ M Fn On |
| 12 | fnfun 6621 | . . . . 5 ⊢ ( M Fn On → Fun M ) | |
| 13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ Fun M |
| 14 | resfunexg 7192 | . . . 4 ⊢ ((Fun M ∧ 𝐴 ∈ On) → ( M ↾ 𝐴) ∈ V) | |
| 15 | 13, 14 | mpan 690 | . . 3 ⊢ (𝐴 ∈ On → ( M ↾ 𝐴) ∈ V) |
| 16 | scutf 27731 | . . . . 5 ⊢ |s : <<s ⟶ No | |
| 17 | ffun 6694 | . . . . 5 ⊢ ( |s : <<s ⟶ No → Fun |s ) | |
| 18 | 16, 17 | ax-mp 5 | . . . 4 ⊢ Fun |s |
| 19 | funimaexg 6606 | . . . . . . 7 ⊢ ((Fun M ∧ 𝐴 ∈ On) → ( M “ 𝐴) ∈ V) | |
| 20 | 13, 19 | mpan 690 | . . . . . 6 ⊢ (𝐴 ∈ On → ( M “ 𝐴) ∈ V) |
| 21 | uniexg 7719 | . . . . . 6 ⊢ (( M “ 𝐴) ∈ V → ∪ ( M “ 𝐴) ∈ V) | |
| 22 | pwexg 5336 | . . . . . 6 ⊢ (∪ ( M “ 𝐴) ∈ V → 𝒫 ∪ ( M “ 𝐴) ∈ V) | |
| 23 | 20, 21, 22 | 3syl 18 | . . . . 5 ⊢ (𝐴 ∈ On → 𝒫 ∪ ( M “ 𝐴) ∈ V) |
| 24 | 23, 23 | xpexd 7730 | . . . 4 ⊢ (𝐴 ∈ On → (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)) ∈ V) |
| 25 | funimaexg 6606 | . . . 4 ⊢ ((Fun |s ∧ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)) ∈ V) → ( |s “ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴))) ∈ V) | |
| 26 | 18, 24, 25 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ On → ( |s “ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴))) ∈ V) |
| 27 | 3, 10, 15, 26 | fvmptd3 6994 | . 2 ⊢ (𝐴 ∈ On → ((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))‘( M ↾ 𝐴)) = ( |s “ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)))) |
| 28 | 2, 27 | eqtrd 2765 | 1 ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ( |s “ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 𝒫 cpw 4566 ∪ cuni 4874 ↦ cmpt 5191 × cxp 5639 ran crn 5642 ↾ cres 5643 “ cima 5644 Oncon0 6335 Fun wfun 6508 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 No csur 27558 <<s csslt 27699 |s cscut 27701 M cmade 27757 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-1o 8437 df-2o 8438 df-no 27561 df-slt 27562 df-bday 27563 df-sslt 27700 df-scut 27702 df-made 27762 |
| This theorem is referenced by: madeval2 27768 madefi 27831 |
| Copyright terms: Public domain | W3C validator |