Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madeval Structured version   Visualization version   GIF version

Theorem madeval 33402
Description: The value of the made by function. (Contributed by Scott Fenton, 17-Dec-2021.)
Assertion
Ref Expression
madeval (𝐴 ∈ On → ( M ‘𝐴) = ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))))

Proof of Theorem madeval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-made 33397 . . 3 M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥))))
21tfr2 8017 . 2 (𝐴 ∈ On → ( M ‘𝐴) = ((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))‘( M ↾ 𝐴)))
3 eqid 2798 . . 3 (𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥))) = (𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))
4 rneq 5770 . . . . . . . 8 (𝑥 = ( M ↾ 𝐴) → ran 𝑥 = ran ( M ↾ 𝐴))
5 df-ima 5532 . . . . . . . 8 ( M “ 𝐴) = ran ( M ↾ 𝐴)
64, 5eqtr4di 2851 . . . . . . 7 (𝑥 = ( M ↾ 𝐴) → ran 𝑥 = ( M “ 𝐴))
76unieqd 4814 . . . . . 6 (𝑥 = ( M ↾ 𝐴) → ran 𝑥 = ( M “ 𝐴))
87pweqd 4516 . . . . 5 (𝑥 = ( M ↾ 𝐴) → 𝒫 ran 𝑥 = 𝒫 ( M “ 𝐴))
98sqxpeqd 5551 . . . 4 (𝑥 = ( M ↾ 𝐴) → (𝒫 ran 𝑥 × 𝒫 ran 𝑥) = (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)))
109imaeq2d 5896 . . 3 (𝑥 = ( M ↾ 𝐴) → ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)) = ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))))
111tfr1 8016 . . . . 5 M Fn On
12 fnfun 6423 . . . . 5 ( M Fn On → Fun M )
1311, 12ax-mp 5 . . . 4 Fun M
14 resfunexg 6955 . . . 4 ((Fun M ∧ 𝐴 ∈ On) → ( M ↾ 𝐴) ∈ V)
1513, 14mpan 689 . . 3 (𝐴 ∈ On → ( M ↾ 𝐴) ∈ V)
16 scutf 33386 . . . . 5 |s : <<s ⟶ No
17 ffun 6490 . . . . 5 ( |s : <<s ⟶ No → Fun |s )
1816, 17ax-mp 5 . . . 4 Fun |s
19 funimaexg 6410 . . . . . . 7 ((Fun M ∧ 𝐴 ∈ On) → ( M “ 𝐴) ∈ V)
2013, 19mpan 689 . . . . . 6 (𝐴 ∈ On → ( M “ 𝐴) ∈ V)
21 uniexg 7446 . . . . . 6 (( M “ 𝐴) ∈ V → ( M “ 𝐴) ∈ V)
22 pwexg 5244 . . . . . 6 ( ( M “ 𝐴) ∈ V → 𝒫 ( M “ 𝐴) ∈ V)
2320, 21, 223syl 18 . . . . 5 (𝐴 ∈ On → 𝒫 ( M “ 𝐴) ∈ V)
2423, 23xpexd 7454 . . . 4 (𝐴 ∈ On → (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∈ V)
25 funimaexg 6410 . . . 4 ((Fun |s ∧ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∈ V) → ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) ∈ V)
2618, 24, 25sylancr 590 . . 3 (𝐴 ∈ On → ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) ∈ V)
273, 10, 15, 26fvmptd3 6768 . 2 (𝐴 ∈ On → ((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))‘( M ↾ 𝐴)) = ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))))
282, 27eqtrd 2833 1 (𝐴 ∈ On → ( M ‘𝐴) = ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  Vcvv 3441  𝒫 cpw 4497   cuni 4800  cmpt 5110   × cxp 5517  ran crn 5520  cres 5521  cima 5522  Oncon0 6159  Fun wfun 6318   Fn wfn 6319  wf 6320  cfv 6324   No csur 33260   <<s csslt 33363   |s cscut 33365   M cmade 33392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-wrecs 7930  df-recs 7991  df-1o 8085  df-2o 8086  df-no 33263  df-slt 33264  df-bday 33265  df-sslt 33364  df-scut 33366  df-made 33397
This theorem is referenced by:  madeval2  33403
  Copyright terms: Public domain W3C validator