MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madeval Structured version   Visualization version   GIF version

Theorem madeval 27780
Description: The value of the made by function. (Contributed by Scott Fenton, 17-Dec-2021.)
Assertion
Ref Expression
madeval (𝐴 ∈ On → ( M ‘𝐴) = ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))))

Proof of Theorem madeval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-made 27775 . . 3 M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥))))
21tfr2 8327 . 2 (𝐴 ∈ On → ( M ‘𝐴) = ((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))‘( M ↾ 𝐴)))
3 eqid 2729 . . 3 (𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥))) = (𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))
4 rneq 5882 . . . . . . . 8 (𝑥 = ( M ↾ 𝐴) → ran 𝑥 = ran ( M ↾ 𝐴))
5 df-ima 5636 . . . . . . . 8 ( M “ 𝐴) = ran ( M ↾ 𝐴)
64, 5eqtr4di 2782 . . . . . . 7 (𝑥 = ( M ↾ 𝐴) → ran 𝑥 = ( M “ 𝐴))
76unieqd 4874 . . . . . 6 (𝑥 = ( M ↾ 𝐴) → ran 𝑥 = ( M “ 𝐴))
87pweqd 4570 . . . . 5 (𝑥 = ( M ↾ 𝐴) → 𝒫 ran 𝑥 = 𝒫 ( M “ 𝐴))
98sqxpeqd 5655 . . . 4 (𝑥 = ( M ↾ 𝐴) → (𝒫 ran 𝑥 × 𝒫 ran 𝑥) = (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)))
109imaeq2d 6015 . . 3 (𝑥 = ( M ↾ 𝐴) → ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)) = ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))))
111tfr1 8326 . . . . 5 M Fn On
12 fnfun 6586 . . . . 5 ( M Fn On → Fun M )
1311, 12ax-mp 5 . . . 4 Fun M
14 resfunexg 7155 . . . 4 ((Fun M ∧ 𝐴 ∈ On) → ( M ↾ 𝐴) ∈ V)
1513, 14mpan 690 . . 3 (𝐴 ∈ On → ( M ↾ 𝐴) ∈ V)
16 scutf 27741 . . . . 5 |s : <<s ⟶ No
17 ffun 6659 . . . . 5 ( |s : <<s ⟶ No → Fun |s )
1816, 17ax-mp 5 . . . 4 Fun |s
19 funimaexg 6573 . . . . . . 7 ((Fun M ∧ 𝐴 ∈ On) → ( M “ 𝐴) ∈ V)
2013, 19mpan 690 . . . . . 6 (𝐴 ∈ On → ( M “ 𝐴) ∈ V)
21 uniexg 7680 . . . . . 6 (( M “ 𝐴) ∈ V → ( M “ 𝐴) ∈ V)
22 pwexg 5320 . . . . . 6 ( ( M “ 𝐴) ∈ V → 𝒫 ( M “ 𝐴) ∈ V)
2320, 21, 223syl 18 . . . . 5 (𝐴 ∈ On → 𝒫 ( M “ 𝐴) ∈ V)
2423, 23xpexd 7691 . . . 4 (𝐴 ∈ On → (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∈ V)
25 funimaexg 6573 . . . 4 ((Fun |s ∧ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∈ V) → ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) ∈ V)
2618, 24, 25sylancr 587 . . 3 (𝐴 ∈ On → ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) ∈ V)
273, 10, 15, 26fvmptd3 6957 . 2 (𝐴 ∈ On → ((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))‘( M ↾ 𝐴)) = ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))))
282, 27eqtrd 2764 1 (𝐴 ∈ On → ( M ‘𝐴) = ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3438  𝒫 cpw 4553   cuni 4861  cmpt 5176   × cxp 5621  ran crn 5624  cres 5625  cima 5626  Oncon0 6311  Fun wfun 6480   Fn wfn 6481  wf 6482  cfv 6486   No csur 27567   <<s csslt 27709   |s cscut 27711   M cmade 27770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-1o 8395  df-2o 8396  df-no 27570  df-slt 27571  df-bday 27572  df-sslt 27710  df-scut 27712  df-made 27775
This theorem is referenced by:  madeval2  27781  madefi  27845
  Copyright terms: Public domain W3C validator