MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madeval Structured version   Visualization version   GIF version

Theorem madeval 27812
Description: The value of the made by function. (Contributed by Scott Fenton, 17-Dec-2021.)
Assertion
Ref Expression
madeval (𝐴 ∈ On → ( M ‘𝐴) = ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))))

Proof of Theorem madeval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-made 27807 . . 3 M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥))))
21tfr2 8412 . 2 (𝐴 ∈ On → ( M ‘𝐴) = ((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))‘( M ↾ 𝐴)))
3 eqid 2735 . . 3 (𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥))) = (𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))
4 rneq 5916 . . . . . . . 8 (𝑥 = ( M ↾ 𝐴) → ran 𝑥 = ran ( M ↾ 𝐴))
5 df-ima 5667 . . . . . . . 8 ( M “ 𝐴) = ran ( M ↾ 𝐴)
64, 5eqtr4di 2788 . . . . . . 7 (𝑥 = ( M ↾ 𝐴) → ran 𝑥 = ( M “ 𝐴))
76unieqd 4896 . . . . . 6 (𝑥 = ( M ↾ 𝐴) → ran 𝑥 = ( M “ 𝐴))
87pweqd 4592 . . . . 5 (𝑥 = ( M ↾ 𝐴) → 𝒫 ran 𝑥 = 𝒫 ( M “ 𝐴))
98sqxpeqd 5686 . . . 4 (𝑥 = ( M ↾ 𝐴) → (𝒫 ran 𝑥 × 𝒫 ran 𝑥) = (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)))
109imaeq2d 6047 . . 3 (𝑥 = ( M ↾ 𝐴) → ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)) = ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))))
111tfr1 8411 . . . . 5 M Fn On
12 fnfun 6638 . . . . 5 ( M Fn On → Fun M )
1311, 12ax-mp 5 . . . 4 Fun M
14 resfunexg 7207 . . . 4 ((Fun M ∧ 𝐴 ∈ On) → ( M ↾ 𝐴) ∈ V)
1513, 14mpan 690 . . 3 (𝐴 ∈ On → ( M ↾ 𝐴) ∈ V)
16 scutf 27776 . . . . 5 |s : <<s ⟶ No
17 ffun 6709 . . . . 5 ( |s : <<s ⟶ No → Fun |s )
1816, 17ax-mp 5 . . . 4 Fun |s
19 funimaexg 6623 . . . . . . 7 ((Fun M ∧ 𝐴 ∈ On) → ( M “ 𝐴) ∈ V)
2013, 19mpan 690 . . . . . 6 (𝐴 ∈ On → ( M “ 𝐴) ∈ V)
21 uniexg 7734 . . . . . 6 (( M “ 𝐴) ∈ V → ( M “ 𝐴) ∈ V)
22 pwexg 5348 . . . . . 6 ( ( M “ 𝐴) ∈ V → 𝒫 ( M “ 𝐴) ∈ V)
2320, 21, 223syl 18 . . . . 5 (𝐴 ∈ On → 𝒫 ( M “ 𝐴) ∈ V)
2423, 23xpexd 7745 . . . 4 (𝐴 ∈ On → (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∈ V)
25 funimaexg 6623 . . . 4 ((Fun |s ∧ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∈ V) → ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) ∈ V)
2618, 24, 25sylancr 587 . . 3 (𝐴 ∈ On → ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) ∈ V)
273, 10, 15, 26fvmptd3 7009 . 2 (𝐴 ∈ On → ((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))‘( M ↾ 𝐴)) = ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))))
282, 27eqtrd 2770 1 (𝐴 ∈ On → ( M ‘𝐴) = ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3459  𝒫 cpw 4575   cuni 4883  cmpt 5201   × cxp 5652  ran crn 5655  cres 5656  cima 5657  Oncon0 6352  Fun wfun 6525   Fn wfn 6526  wf 6527  cfv 6531   No csur 27603   <<s csslt 27744   |s cscut 27746   M cmade 27802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-1o 8480  df-2o 8481  df-no 27606  df-slt 27607  df-bday 27608  df-sslt 27745  df-scut 27747  df-made 27807
This theorem is referenced by:  madeval2  27813  madefi  27876
  Copyright terms: Public domain W3C validator