Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > madeval | Structured version Visualization version GIF version |
Description: The value of the made by function. (Contributed by Scott Fenton, 17-Dec-2021.) |
Ref | Expression |
---|---|
madeval | ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ( |s “ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-made 33958 | . . 3 ⊢ M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) | |
2 | 1 | tfr2 8200 | . 2 ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))‘( M ↾ 𝐴))) |
3 | eqid 2738 | . . 3 ⊢ (𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥))) = (𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥))) | |
4 | rneq 5834 | . . . . . . . 8 ⊢ (𝑥 = ( M ↾ 𝐴) → ran 𝑥 = ran ( M ↾ 𝐴)) | |
5 | df-ima 5593 | . . . . . . . 8 ⊢ ( M “ 𝐴) = ran ( M ↾ 𝐴) | |
6 | 4, 5 | eqtr4di 2797 | . . . . . . 7 ⊢ (𝑥 = ( M ↾ 𝐴) → ran 𝑥 = ( M “ 𝐴)) |
7 | 6 | unieqd 4850 | . . . . . 6 ⊢ (𝑥 = ( M ↾ 𝐴) → ∪ ran 𝑥 = ∪ ( M “ 𝐴)) |
8 | 7 | pweqd 4549 | . . . . 5 ⊢ (𝑥 = ( M ↾ 𝐴) → 𝒫 ∪ ran 𝑥 = 𝒫 ∪ ( M “ 𝐴)) |
9 | 8 | sqxpeqd 5612 | . . . 4 ⊢ (𝑥 = ( M ↾ 𝐴) → (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥) = (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴))) |
10 | 9 | imaeq2d 5958 | . . 3 ⊢ (𝑥 = ( M ↾ 𝐴) → ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)) = ( |s “ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)))) |
11 | 1 | tfr1 8199 | . . . . 5 ⊢ M Fn On |
12 | fnfun 6517 | . . . . 5 ⊢ ( M Fn On → Fun M ) | |
13 | 11, 12 | ax-mp 5 | . . . 4 ⊢ Fun M |
14 | resfunexg 7073 | . . . 4 ⊢ ((Fun M ∧ 𝐴 ∈ On) → ( M ↾ 𝐴) ∈ V) | |
15 | 13, 14 | mpan 686 | . . 3 ⊢ (𝐴 ∈ On → ( M ↾ 𝐴) ∈ V) |
16 | scutf 33933 | . . . . 5 ⊢ |s : <<s ⟶ No | |
17 | ffun 6587 | . . . . 5 ⊢ ( |s : <<s ⟶ No → Fun |s ) | |
18 | 16, 17 | ax-mp 5 | . . . 4 ⊢ Fun |s |
19 | funimaexg 6504 | . . . . . . 7 ⊢ ((Fun M ∧ 𝐴 ∈ On) → ( M “ 𝐴) ∈ V) | |
20 | 13, 19 | mpan 686 | . . . . . 6 ⊢ (𝐴 ∈ On → ( M “ 𝐴) ∈ V) |
21 | uniexg 7571 | . . . . . 6 ⊢ (( M “ 𝐴) ∈ V → ∪ ( M “ 𝐴) ∈ V) | |
22 | pwexg 5296 | . . . . . 6 ⊢ (∪ ( M “ 𝐴) ∈ V → 𝒫 ∪ ( M “ 𝐴) ∈ V) | |
23 | 20, 21, 22 | 3syl 18 | . . . . 5 ⊢ (𝐴 ∈ On → 𝒫 ∪ ( M “ 𝐴) ∈ V) |
24 | 23, 23 | xpexd 7579 | . . . 4 ⊢ (𝐴 ∈ On → (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)) ∈ V) |
25 | funimaexg 6504 | . . . 4 ⊢ ((Fun |s ∧ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)) ∈ V) → ( |s “ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴))) ∈ V) | |
26 | 18, 24, 25 | sylancr 586 | . . 3 ⊢ (𝐴 ∈ On → ( |s “ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴))) ∈ V) |
27 | 3, 10, 15, 26 | fvmptd3 6880 | . 2 ⊢ (𝐴 ∈ On → ((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))‘( M ↾ 𝐴)) = ( |s “ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)))) |
28 | 2, 27 | eqtrd 2778 | 1 ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ( |s “ (𝒫 ∪ ( M “ 𝐴) × 𝒫 ∪ ( M “ 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 𝒫 cpw 4530 ∪ cuni 4836 ↦ cmpt 5153 × cxp 5578 ran crn 5581 ↾ cres 5582 “ cima 5583 Oncon0 6251 Fun wfun 6412 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 No csur 33770 <<s csslt 33902 |s cscut 33904 M cmade 33953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-1o 8267 df-2o 8268 df-no 33773 df-slt 33774 df-bday 33775 df-sslt 33903 df-scut 33905 df-made 33958 |
This theorem is referenced by: madeval2 33964 |
Copyright terms: Public domain | W3C validator |