Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rightf | Structured version Visualization version GIF version |
Description: The functionality of the right options function. (Contributed by Scott Fenton, 6-Aug-2024.) |
Ref | Expression |
---|---|
rightf | ⊢ R : No ⟶𝒫 No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-right 34022 | . 2 ⊢ R = (𝑥 ∈ No ↦ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦}) | |
2 | bdayelon 33958 | . . . . . . . 8 ⊢ ( bday ‘𝑥) ∈ On | |
3 | oldf 34028 | . . . . . . . . 9 ⊢ O :On⟶𝒫 No | |
4 | 3 | ffvelrni 6954 | . . . . . . . 8 ⊢ (( bday ‘𝑥) ∈ On → ( O ‘( bday ‘𝑥)) ∈ 𝒫 No ) |
5 | 2, 4 | mp1i 13 | . . . . . . 7 ⊢ (𝑥 ∈ No → ( O ‘( bday ‘𝑥)) ∈ 𝒫 No ) |
6 | 5 | elpwid 4546 | . . . . . 6 ⊢ (𝑥 ∈ No → ( O ‘( bday ‘𝑥)) ⊆ No ) |
7 | 6 | sselda 3922 | . . . . 5 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ ( O ‘( bday ‘𝑥))) → 𝑦 ∈ No ) |
8 | 7 | a1d 25 | . . . 4 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ ( O ‘( bday ‘𝑥))) → (𝑥 <s 𝑦 → 𝑦 ∈ No )) |
9 | 8 | ralrimiva 3103 | . . 3 ⊢ (𝑥 ∈ No → ∀𝑦 ∈ ( O ‘( bday ‘𝑥))(𝑥 <s 𝑦 → 𝑦 ∈ No )) |
10 | fvex 6781 | . . . . . 6 ⊢ ( O ‘( bday ‘𝑥)) ∈ V | |
11 | 10 | rabex 5256 | . . . . 5 ⊢ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦} ∈ V |
12 | 11 | elpw 4539 | . . . 4 ⊢ ({𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦} ∈ 𝒫 No ↔ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦} ⊆ No ) |
13 | rabss 4006 | . . . 4 ⊢ ({𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦} ⊆ No ↔ ∀𝑦 ∈ ( O ‘( bday ‘𝑥))(𝑥 <s 𝑦 → 𝑦 ∈ No )) | |
14 | 12, 13 | bitri 274 | . . 3 ⊢ ({𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦} ∈ 𝒫 No ↔ ∀𝑦 ∈ ( O ‘( bday ‘𝑥))(𝑥 <s 𝑦 → 𝑦 ∈ No )) |
15 | 9, 14 | sylibr 233 | . 2 ⊢ (𝑥 ∈ No → {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦} ∈ 𝒫 No ) |
16 | 1, 15 | fmpti 6980 | 1 ⊢ R : No ⟶𝒫 No |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 {crab 3068 ⊆ wss 3888 𝒫 cpw 4535 class class class wbr 5075 Oncon0 6261 ⟶wf 6424 ‘cfv 6428 No csur 33830 <s cslt 33831 bday cbday 33832 O cold 34014 R cright 34017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5486 df-eprel 5492 df-po 5500 df-so 5501 df-fr 5541 df-we 5543 df-xp 5592 df-rel 5593 df-cnv 5594 df-co 5595 df-dm 5596 df-rn 5597 df-res 5598 df-ima 5599 df-pred 6197 df-ord 6264 df-on 6265 df-suc 6267 df-iota 6386 df-fun 6430 df-fn 6431 df-f 6432 df-f1 6433 df-fo 6434 df-f1o 6435 df-fv 6436 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-1o 8286 df-2o 8287 df-no 33833 df-slt 33834 df-bday 33835 df-sslt 33963 df-scut 33965 df-made 34018 df-old 34019 df-right 34022 |
This theorem is referenced by: ssltright 34042 lrold 34064 |
Copyright terms: Public domain | W3C validator |