Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rightf Structured version   Visualization version   GIF version

Theorem rightf 34050
Description: The functionality of the right options function. (Contributed by Scott Fenton, 6-Aug-2024.)
Assertion
Ref Expression
rightf R : No ⟶𝒫 No

Proof of Theorem rightf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-right 34035 . 2 R = (𝑥 No ↦ {𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑥 <s 𝑦})
2 bdayelon 33971 . . . . . . . 8 ( bday 𝑥) ∈ On
3 oldf 34041 . . . . . . . . 9 O :On⟶𝒫 No
43ffvelrni 6960 . . . . . . . 8 (( bday 𝑥) ∈ On → ( O ‘( bday 𝑥)) ∈ 𝒫 No )
52, 4mp1i 13 . . . . . . 7 (𝑥 No → ( O ‘( bday 𝑥)) ∈ 𝒫 No )
65elpwid 4544 . . . . . 6 (𝑥 No → ( O ‘( bday 𝑥)) ⊆ No )
76sselda 3921 . . . . 5 ((𝑥 No 𝑦 ∈ ( O ‘( bday 𝑥))) → 𝑦 No )
87a1d 25 . . . 4 ((𝑥 No 𝑦 ∈ ( O ‘( bday 𝑥))) → (𝑥 <s 𝑦𝑦 No ))
98ralrimiva 3103 . . 3 (𝑥 No → ∀𝑦 ∈ ( O ‘( bday 𝑥))(𝑥 <s 𝑦𝑦 No ))
10 fvex 6787 . . . . . 6 ( O ‘( bday 𝑥)) ∈ V
1110rabex 5256 . . . . 5 {𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑥 <s 𝑦} ∈ V
1211elpw 4537 . . . 4 ({𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑥 <s 𝑦} ∈ 𝒫 No ↔ {𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑥 <s 𝑦} ⊆ No )
13 rabss 4005 . . . 4 ({𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑥 <s 𝑦} ⊆ No ↔ ∀𝑦 ∈ ( O ‘( bday 𝑥))(𝑥 <s 𝑦𝑦 No ))
1412, 13bitri 274 . . 3 ({𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑥 <s 𝑦} ∈ 𝒫 No ↔ ∀𝑦 ∈ ( O ‘( bday 𝑥))(𝑥 <s 𝑦𝑦 No ))
159, 14sylibr 233 . 2 (𝑥 No → {𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑥 <s 𝑦} ∈ 𝒫 No )
161, 15fmpti 6986 1 R : No ⟶𝒫 No
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wral 3064  {crab 3068  wss 3887  𝒫 cpw 4533   class class class wbr 5074  Oncon0 6266  wf 6429  cfv 6433   No csur 33843   <s cslt 33844   bday cbday 33845   O cold 34027   R cright 34030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-1o 8297  df-2o 8298  df-no 33846  df-slt 33847  df-bday 33848  df-sslt 33976  df-scut 33978  df-made 34031  df-old 34032  df-right 34035
This theorem is referenced by:  ssltright  34055  lrold  34077
  Copyright terms: Public domain W3C validator