![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rightf | Structured version Visualization version GIF version |
Description: The functionality of the right options function. (Contributed by Scott Fenton, 6-Aug-2024.) |
Ref | Expression |
---|---|
rightf | ⊢ R : No ⟶𝒫 No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-right 27875 | . 2 ⊢ R = (𝑥 ∈ No ↦ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦}) | |
2 | bdayelon 27806 | . . . . . . . 8 ⊢ ( bday ‘𝑥) ∈ On | |
3 | oldf 27881 | . . . . . . . . 9 ⊢ O :On⟶𝒫 No | |
4 | 3 | ffvelcdmi 7097 | . . . . . . . 8 ⊢ (( bday ‘𝑥) ∈ On → ( O ‘( bday ‘𝑥)) ∈ 𝒫 No ) |
5 | 2, 4 | mp1i 13 | . . . . . . 7 ⊢ (𝑥 ∈ No → ( O ‘( bday ‘𝑥)) ∈ 𝒫 No ) |
6 | 5 | elpwid 4616 | . . . . . 6 ⊢ (𝑥 ∈ No → ( O ‘( bday ‘𝑥)) ⊆ No ) |
7 | 6 | sselda 3979 | . . . . 5 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ ( O ‘( bday ‘𝑥))) → 𝑦 ∈ No ) |
8 | 7 | a1d 25 | . . . 4 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ ( O ‘( bday ‘𝑥))) → (𝑥 <s 𝑦 → 𝑦 ∈ No )) |
9 | 8 | ralrimiva 3136 | . . 3 ⊢ (𝑥 ∈ No → ∀𝑦 ∈ ( O ‘( bday ‘𝑥))(𝑥 <s 𝑦 → 𝑦 ∈ No )) |
10 | fvex 6914 | . . . . . 6 ⊢ ( O ‘( bday ‘𝑥)) ∈ V | |
11 | 10 | rabex 5339 | . . . . 5 ⊢ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦} ∈ V |
12 | 11 | elpw 4611 | . . . 4 ⊢ ({𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦} ∈ 𝒫 No ↔ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦} ⊆ No ) |
13 | rabss 4068 | . . . 4 ⊢ ({𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦} ⊆ No ↔ ∀𝑦 ∈ ( O ‘( bday ‘𝑥))(𝑥 <s 𝑦 → 𝑦 ∈ No )) | |
14 | 12, 13 | bitri 274 | . . 3 ⊢ ({𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦} ∈ 𝒫 No ↔ ∀𝑦 ∈ ( O ‘( bday ‘𝑥))(𝑥 <s 𝑦 → 𝑦 ∈ No )) |
15 | 9, 14 | sylibr 233 | . 2 ⊢ (𝑥 ∈ No → {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦} ∈ 𝒫 No ) |
16 | 1, 15 | fmpti 7126 | 1 ⊢ R : No ⟶𝒫 No |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2099 ∀wral 3051 {crab 3419 ⊆ wss 3947 𝒫 cpw 4607 class class class wbr 5153 Oncon0 6376 ⟶wf 6550 ‘cfv 6554 No csur 27669 <s cslt 27670 bday cbday 27671 O cold 27867 R cright 27870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-1o 8496 df-2o 8497 df-no 27672 df-slt 27673 df-bday 27674 df-sslt 27811 df-scut 27813 df-made 27871 df-old 27872 df-right 27875 |
This theorem is referenced by: ssltright 27895 lltropt 27896 lrold 27920 |
Copyright terms: Public domain | W3C validator |