![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rightf | Structured version Visualization version GIF version |
Description: The functionality of the right options function. (Contributed by Scott Fenton, 6-Aug-2024.) |
Ref | Expression |
---|---|
rightf | ⊢ R : No ⟶𝒫 No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-right 27905 | . 2 ⊢ R = (𝑥 ∈ No ↦ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦}) | |
2 | bdayelon 27836 | . . . . . . . 8 ⊢ ( bday ‘𝑥) ∈ On | |
3 | oldf 27911 | . . . . . . . . 9 ⊢ O :On⟶𝒫 No | |
4 | 3 | ffvelcdmi 7103 | . . . . . . . 8 ⊢ (( bday ‘𝑥) ∈ On → ( O ‘( bday ‘𝑥)) ∈ 𝒫 No ) |
5 | 2, 4 | mp1i 13 | . . . . . . 7 ⊢ (𝑥 ∈ No → ( O ‘( bday ‘𝑥)) ∈ 𝒫 No ) |
6 | 5 | elpwid 4614 | . . . . . 6 ⊢ (𝑥 ∈ No → ( O ‘( bday ‘𝑥)) ⊆ No ) |
7 | 6 | sselda 3995 | . . . . 5 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ ( O ‘( bday ‘𝑥))) → 𝑦 ∈ No ) |
8 | 7 | a1d 25 | . . . 4 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ ( O ‘( bday ‘𝑥))) → (𝑥 <s 𝑦 → 𝑦 ∈ No )) |
9 | 8 | ralrimiva 3144 | . . 3 ⊢ (𝑥 ∈ No → ∀𝑦 ∈ ( O ‘( bday ‘𝑥))(𝑥 <s 𝑦 → 𝑦 ∈ No )) |
10 | fvex 6920 | . . . . . 6 ⊢ ( O ‘( bday ‘𝑥)) ∈ V | |
11 | 10 | rabex 5345 | . . . . 5 ⊢ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦} ∈ V |
12 | 11 | elpw 4609 | . . . 4 ⊢ ({𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦} ∈ 𝒫 No ↔ {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦} ⊆ No ) |
13 | rabss 4082 | . . . 4 ⊢ ({𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦} ⊆ No ↔ ∀𝑦 ∈ ( O ‘( bday ‘𝑥))(𝑥 <s 𝑦 → 𝑦 ∈ No )) | |
14 | 12, 13 | bitri 275 | . . 3 ⊢ ({𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦} ∈ 𝒫 No ↔ ∀𝑦 ∈ ( O ‘( bday ‘𝑥))(𝑥 <s 𝑦 → 𝑦 ∈ No )) |
15 | 9, 14 | sylibr 234 | . 2 ⊢ (𝑥 ∈ No → {𝑦 ∈ ( O ‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦} ∈ 𝒫 No ) |
16 | 1, 15 | fmpti 7132 | 1 ⊢ R : No ⟶𝒫 No |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 ∀wral 3059 {crab 3433 ⊆ wss 3963 𝒫 cpw 4605 class class class wbr 5148 Oncon0 6386 ⟶wf 6559 ‘cfv 6563 No csur 27699 <s cslt 27700 bday cbday 27701 O cold 27897 R cright 27900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-1o 8505 df-2o 8506 df-no 27702 df-slt 27703 df-bday 27704 df-sslt 27841 df-scut 27843 df-made 27901 df-old 27902 df-right 27905 |
This theorem is referenced by: ssltright 27925 lltropt 27926 lrold 27950 |
Copyright terms: Public domain | W3C validator |