![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rightf | Structured version Visualization version GIF version |
Description: The functionality of the right options function. (Contributed by Scott Fenton, 6-Aug-2024.) |
Ref | Expression |
---|---|
rightf | β’ R : No βΆπ« No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-right 27583 | . 2 β’ R = (π₯ β No β¦ {π¦ β ( O β( bday βπ₯)) β£ π₯ <s π¦}) | |
2 | bdayelon 27514 | . . . . . . . 8 β’ ( bday βπ₯) β On | |
3 | oldf 27589 | . . . . . . . . 9 β’ O :OnβΆπ« No | |
4 | 3 | ffvelcdmi 7084 | . . . . . . . 8 β’ (( bday βπ₯) β On β ( O β( bday βπ₯)) β π« No ) |
5 | 2, 4 | mp1i 13 | . . . . . . 7 β’ (π₯ β No β ( O β( bday βπ₯)) β π« No ) |
6 | 5 | elpwid 4610 | . . . . . 6 β’ (π₯ β No β ( O β( bday βπ₯)) β No ) |
7 | 6 | sselda 3981 | . . . . 5 β’ ((π₯ β No β§ π¦ β ( O β( bday βπ₯))) β π¦ β No ) |
8 | 7 | a1d 25 | . . . 4 β’ ((π₯ β No β§ π¦ β ( O β( bday βπ₯))) β (π₯ <s π¦ β π¦ β No )) |
9 | 8 | ralrimiva 3144 | . . 3 β’ (π₯ β No β βπ¦ β ( O β( bday βπ₯))(π₯ <s π¦ β π¦ β No )) |
10 | fvex 6903 | . . . . . 6 β’ ( O β( bday βπ₯)) β V | |
11 | 10 | rabex 5331 | . . . . 5 β’ {π¦ β ( O β( bday βπ₯)) β£ π₯ <s π¦} β V |
12 | 11 | elpw 4605 | . . . 4 β’ ({π¦ β ( O β( bday βπ₯)) β£ π₯ <s π¦} β π« No β {π¦ β ( O β( bday βπ₯)) β£ π₯ <s π¦} β No ) |
13 | rabss 4068 | . . . 4 β’ ({π¦ β ( O β( bday βπ₯)) β£ π₯ <s π¦} β No β βπ¦ β ( O β( bday βπ₯))(π₯ <s π¦ β π¦ β No )) | |
14 | 12, 13 | bitri 274 | . . 3 β’ ({π¦ β ( O β( bday βπ₯)) β£ π₯ <s π¦} β π« No β βπ¦ β ( O β( bday βπ₯))(π₯ <s π¦ β π¦ β No )) |
15 | 9, 14 | sylibr 233 | . 2 β’ (π₯ β No β {π¦ β ( O β( bday βπ₯)) β£ π₯ <s π¦} β π« No ) |
16 | 1, 15 | fmpti 7112 | 1 β’ R : No βΆπ« No |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β wcel 2104 βwral 3059 {crab 3430 β wss 3947 π« cpw 4601 class class class wbr 5147 Oncon0 6363 βΆwf 6538 βcfv 6542 No csur 27379 <s cslt 27380 bday cbday 27381 O cold 27575 R cright 27578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-1o 8468 df-2o 8469 df-no 27382 df-slt 27383 df-bday 27384 df-sslt 27519 df-scut 27521 df-made 27579 df-old 27580 df-right 27583 |
This theorem is referenced by: ssltright 27603 lltropt 27604 lrold 27628 |
Copyright terms: Public domain | W3C validator |